作者单位
摘要
东北林业大学 生物质材料科学与技术教育部重点实验室, 哈尔滨 150040
以木糖为碳源, 利用嵌段共聚物聚环氧乙烷-聚环氧丙烷-聚环氧乙烷 (P123)/十二烷基硫酸钠(SDS)混合乳液构筑微反应器, 水热炭化制备马蹄形中空多孔炭。研究表明木糖在微反应器与溶液界面发生水热反应, 160 ℃水热条件下P123的亲水聚环氧乙烷嵌段(PEO)亲水性下降并向乳液内部增溶, 使乳液逐渐润胀和破裂。P123/SDS质量比会影响微反应器的完整度, 而水热时间可以调控微反应器的开口角度和空腔直径。开放性空腔能储存更多电荷和离子并缩短传输距离, 使多孔炭的比电容和能量密度增大且与空腔直径呈正相关关系。当P123/SDS质量比为1.25 : 1、水热时间为12 h时, 马蹄形中空多孔炭的开口角度(63°)和空腔直径(80 nm)最大、电化学性能最佳, 在6 mol·L-1 KOH三电极体系中电流密度1 A·g-1时比电容达292 F·g-1; 在两电极体系中电流密度0.2 A·g-1时比电容达185 F·g-1, 能量密度达6.44 Wh·kg-1; 电流密度5 A·g-1时5000次充放电循环后电容保持率达94.83%。
马蹄形 中空多孔炭 木糖 水热炭化 模板 界面 horseshoe-shape hollow porous carbon xylose hydrothermal carbonization template interface 
无机材料学报
2023, 38(8): 954
作者单位
摘要
1 太原理工大学材料科学与工程学院,太原 030024
2 兴县经开区铝镁新材料研发有限公司,吕梁 033603
3 天津大学化工学院,天津 300350
高表面积介孔SiO2纳米球(KCC-1)具有纤维状以及独特的孔道结构,这使其拥有较高的比表面积和更多的暴露活性位点,KCC-1能够在表面有效地分散和稳定活性组分,作为载体负载活性组分时表现出优异的性能。本研究以含有大量N原子的三聚氰胺为碳前驱体,通过两步热解法制备得到氮掺杂的多孔碳材料,同时利用KCC-1具有纤维状这一特殊结构,将活性组分分散并限域在其表面,探索KCC-1含量对多孔碳材料结构与电化学性能的影响。研究表明,随着KCC-1含量的增加,材料的比电容整体呈先升高后降低的趋势。当加入KCC-1的质量分数为6%时,材料的比电容最高,为35.88 F·g-1(1 A·g-1电流密度下),与未加入KCC-1的原材料相比提升了约588.7%,且经过换算后同等质量下活性组分的比电容最高能达到190.53 F·g-1。因此,本研究证明了KCC-1的限域效应能够有效提高活性组分的电化学性能及利用率,为将其应用在超级电容器中提供了一定的参考。
纤维状结构 两步热解法 多孔碳材料 限域 电化学性能 KCC-1 KCC-1 fibrous structure two-step pyrolysis porous carbon material confine electrochemical performance 
硅酸盐通报
2023, 42(8): 2895
作者单位
摘要
武汉理工大学化学化工与生命科学学院, 武汉 430070
随着工业化进程的加快, 如何减少氮氧化物的排放受到了人们的强烈关注。目前, 由于络合吸收法对一氧化氮(NO)具有良好的吸收性能, 被视为未来脱硝技术的重要发展方向, 但络合液的再生仍然是一个难题。本文针对络合脱硝中Fe(II)EDTA-NO络合液再生困难且无法连续运行问题进行了探究。以氮掺杂多孔碳为载体,钯纳米微团为活性组分制备出颗粒状Pd/NPCs催化剂, 通过X射线衍射、透射电子显微镜、X射线光电子能谱对Pd/NPCs进行表征。结果表明, 钯纳米微团成功负载到载体上, 其平均粒径为2.36 nm, Pd0含量为68%(质量分数), 对还原Fe(II)EDTA-NO有着良好的催化活性。进一步探究了溶液pH、反应温度、氧含量及液气比等因素对催化剂催化还原Fe(II)EDTA-NO的影响, 搭建了一套可持续运转的流化床试验装置, 其评价试验结果表明在气流量为200 L/h, NO含量为0.07%(体积分数)条件下, 可以维持脱硝率80%以上3 h。
流化床 氮掺杂多孔炭 脱硝 催化剂 工业化 fluidized bed nitrogen doped porous carbon Fe(II)EDTA-NO Fe(II)EDTA-NO denitration catalyst industrialization 
硅酸盐通报
2022, 41(12): 4389
作者单位
摘要
连接技术是实现大尺寸以及复杂构型Cf/SiC复合材料制备及工程化应用的关键技术。本工作使用酚醛树脂作为碳源, 通过反应连接法实现了Cf/SiC复合材料的稳定连接, 研究了多孔碳坯的体积密度和孔径对接头连接性能和微观结构的影响, 讨论了惰性填料含量对接头连接性能和显微组织的影响。研究表明: 树脂基多孔碳素坯的体积密度和孔径分别选定在0.71~0.90 g·cm-3和200~600 nm比较合适, 随着多孔碳素坯孔径增加, 游离硅尺寸逐渐增大; 当孔径为190 nm时, 连接件强度最大为(125±12) MPa。添加SiC惰性填料可以明显减小多孔碳素坯的体积收缩, 当SiC惰性填料质量分数为50%时, 连接件强度最高达到(216±44) MPa, 基本与基体材料强度相当。总体而言, 本研究为实现Cf/SiC复合材料稳定连接提供了理论指导, 对实现复杂形状或大型Cf/SiC复合材料的制备和工程应用具有重要意义。
多孔碳 反应连接 Cf/SiC复合材料 力学性能 微观结构 porous carbon reaction bonded joining Cf/SiC composites microstructure property mechanical 
无机材料学报
2022, 37(12): 1275
作者单位
摘要
1 青海大学,新能源光伏产业研究中心,西宁 810016
2 清华大学材料学院,北京 100084
碳海绵具有低密度、大孔体积、高导热系数等优点,可作为相变材料的良好载体。采用脱脂棉及MgO为原料,合成了具有一定石墨化特性、孔隙率达到96.3%的碳海绵为载体,以Na2SO4?10H2O/Na2HPO4?12H2O为相变介质,制备出多孔碳海绵封装的复合相变材料。结果表明:在700、800 ℃和900 ℃制得的碳海绵对相变材料的吸附量分别达到了自身质量的60、75倍和102倍。同时探讨了在不同温度下制得碳海绵封装的材料在5~60 ℃之间固液相变循环性能,经5 000次循环后,该相变材料的潜热仍在200 J·g-1以上,下降值均在13%以内,导热系数提升率均大于50%。该多孔碳海绵封装的复合相变材料在太阳能储能等领域具有很好的应用前景。
多孔碳海绵 封装 十水硫酸钠 十二水合磷酸氢二钠 复合相变材料 热性能 porous carbon sponge encapsulation sodium sulfate decahydrate disodium hydrogen phosphate dodecahydrate composite phase change material thermal performance 
硅酸盐学报
2022, 50(6): 1634
作者单位
摘要
1 中国科学院山西煤炭化学研究所,太原 030001
2 省部共建煤炭高校利用与绿色化工国家重点实验室,宁夏大学化学化工学院,银川 750021
3 中国科学院大学,北京 100049
作为一种富氮碳源,聚丙烯腈历来被作为生产炭材料的重要原料。但是聚丙烯腈直接炭化会导致其烧结不利于后续深度活化。通过干法球磨石墨烯和聚丙烯腈复合原料,结合稳定化和KOH活化,制备了杂化多孔炭,并系统研究了石墨烯和聚丙烯腈配比及后活化处理对杂化多孔炭性能的影响。结果表明:石墨烯的存在有利于高能球磨过程中热量地快速扩散,有效避免了聚丙烯腈的烧结;而聚丙烯腈进一步抑制了石墨烯片层的团聚,使石墨烯/聚丙烯腈复合前驱体呈现蓬松的粉体结构,利于碱的深度活化。同时,石墨烯在多孔炭结构中形成的三维柔性导电网络便于电荷地快速转移。由于其发达的孔、大的比表面积、优异的导电性以及氮/氧杂原子诱导的赝电容,所制备的杂化多孔炭用作超级电容器电极材料时,在水系和有机系电解液中均表现出了优异的电化学性能。尤其是,优化的HPC-4复合炭材料用作超级电容器的电极时,在1 mol/L四乙基四氟硼酸铵有机电解液中,当功率密度为337.5 W/kg时,能量密度可达30.38 W?偸h/kg。该工作为面向高功率兼高能量超级电容器电极材料的开发提供了一种简易且高效的制备策略。
石墨烯 聚丙烯腈 球磨 杂化多孔炭 超级电容器 graphene polyacrylonitrile ball milling hybrid porous carbon supercapacitor 
硅酸盐学报
2022, 50(7): 1789
作者单位
摘要
辽宁工程技术大学材料科学与工程学院,辽宁 阜新 123000
利用水热合成和高温活化处理对Li4Ti5O12进行多孔碳包覆复合改性实验,制备了Li4Ti5O12@porous-C复合材料,研究了复合材料微观结构和电化学性能。结果表明:Li4Ti5O12完全被包覆在多孔碳层中,同时,Li4Ti5O12@porous-C复合材料表面碳层孔洞分布均匀,碳层厚度约为(8.5±3.6) nm。其首次放电比容量为363 mAh/g,约为纯Li4Ti5O12放电比容量的2倍;交流阻抗值降低,仅为纯Li4Ti5O12的阻抗值的一半;Li4Ti5O12@porous-C复合材料在循环200周后的放电比容量为251 mAh/g,容量保持率为97.7% (纯LTO的比容量为143 mAh/g,保持率为94.7%),放电比容量提高了近1倍,而且特别是在不同放电速率下进行倍率测试时,其可逆容量比Li4Ti5O12提高超1.5倍。对Li4Ti5O12表面进行多孔碳包覆改性,可以同时提高其比表面积和电子传输速率,这也是其电化学性能也显著提高的主要原因。
钛酸锂 多孔碳包覆 电化学性能 锂离子电池 lithium titanate porous carbon coating electrochemical performance lithium ion battery 
硅酸盐学报
2022, 50(2): 364
作者单位
摘要
1 河北科技大学 化学与制药工程学院,石家庄 050018
2 南非大学 非洲可持续性能源发展研究所, 约翰内斯堡 1710, 南非
3 河北医科大学第二附属医院 胆胰内镜外科, 石家庄 050000
抗肿瘤药物靶向传递系统是提高传统化疗药物疗效, 并降低其毒副作用的重要手段。以多孔碳纳米材料为药物载体, 根据肿瘤组织微环境特点, 构建抗肿瘤药物靶向传递系统是实现靶向治疗方案的有效方式。本文围绕基于多孔碳纳米材料的抗肿瘤药物靶向传递系统的构建及应用进行综述, 描述了多孔碳纳米材料适宜载药的设计、合成及功能化修饰; 通过理论与实例相结合的方式, 介绍了提高多孔碳纳米材料载药量和实现联合给药的有效策略; 从内源和外源性敏感刺激的角度, 重点分析了多孔碳纳米材料基于肿瘤微环境构建的靶向传递系统的机制和应用; 阐述了多孔碳纳米材料作为抗肿瘤药物载体面临的生物相容性和生物降解性的问题, 并分析了可能的解决途径; 展望了多孔碳纳米材料在构建肿瘤药物靶向传递系统应用中的前景及发展方向, 为研发靶向、可控的抗肿瘤药物传递系统提供了理论依据和例证支持。
多孔碳纳米材料 结构设计 抗肿瘤 靶向 药物传递系统 综述 porous carbon nanomaterials structural design antitumor targeting drug delivery systems review 
无机材料学报
2021, 36(1): 9
作者单位
摘要
昆明理工大学材料科学与工程学院,锂离子电池及材料制备技术国家地方联合工程实室,云南省先进电池材料重点实验室,昆明 650093
锂二氧化碳电池通过捕获、转化二氧化碳为储能物质,既可以减少二氧化碳排放量又可以作为创新的储能装置,引起了研究者们的广泛关注。但是,目前锂二氧化碳电池还存在着放电容量低,循环性能差等缺点。本文通过对天然松木碳化制备无粘结剂自支撑阴极材料用于锂二氧化碳电池,得益于生物质衍生碳的多孔道特性和自支撑结构,极大地提高了锂二氧化碳电池的放电容量(4.12 mAh?cm-2)和循环性能(55圈)。这种利用天然生物质衍生碳作为自支撑阴极的方法为提高锂二氧化碳电池性能提供了一种新的思路。
生物质衍生 多孔碳 空气阴极 锂二氧化碳电池 biomass derived porous carbon air cathode lithium carbon dioxide battery 
人工晶体学报
2020, 49(4): 646

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!