作者单位
摘要
1 大连理工大学 高性能精密制造全国重点实验室,辽宁大连6024
2 华侨大学 制造工程研究院,福建厦门36101
钇铝石榴石(YAG)晶体是制造固体激光器的重要材料,超精密磨削是加工YAG晶体等硬脆材料零件的重要方法,研究硬脆材料加工表面的微观变形、脆塑转变机理对超精密磨削加工具有重要的指导作用。为了实现YAG晶体低损伤磨削加工,获得高质量表面,基于弹塑性接触理论和压痕断裂力学,通过分析单磨粒划擦作用下材料表面的变形过程,考虑材料的弹性回复、微观下力学性能的尺寸效应,建立了脆塑转变临界深度的预测模型,并计算得到YAG晶体的脆塑转变临界深度为66.7 nm。在此基础上,通过不同粒度砂轮超精密磨削YAG晶体试验对建立的脆塑转变临界深度预测模型进行验证,并计算不同粒度砂轮在相应工艺条件下的磨粒切深。结果表明,磨粒切深高于脆塑转变临界深度时,YAG晶体磨削表面材料以脆性方式被去除,磨削表面损伤严重;磨粒切深低于脆塑转变临界深度时,磨削表面材料以塑性方式被去除,能够获得高质量磨削表面,加工表面粗糙度达到1 nm。建立的脆塑转变临界深度预测模型能够为YAG晶体的低损伤超精密磨削加工提供理论指导。
超精密磨削 YAG晶体 纳米压痕 纳米划痕 脆塑转变 YAG crystal nano-indentation nano-scratch brittle-to-ductile transition ultra-precision grinding 
光学 精密工程
2024, 32(1): 84
殷博 1,2薛常喜 1,2李闯 1,2
作者单位
摘要
1 长春理工大学 光电工程学院,吉林 长春 130022
2 长春理工大学 先进光学设计与制造技术吉林省高校重点实验室,吉林 长春 130022
碳化钨合金因其具有高硬度、高耐磨性和高化学稳定性等优点,成为精密玻璃模压模具材料的首选。为了提高碳化钨合金模芯超精密磨削加工的表面质量,基于WC-6%Co碳化钨合金的物理特性,利用Abaqus建立磨削工艺仿真模型,分析了磨削深度、进给速度、砂轮转速及工件转速对WC-6%Co碳化钨合金磨削加工后表面粗糙度的影响规律,并讨论了磨削碳化钨合金的合理工艺参数范围。采用Taguchi法开展优化实验研究,确定出磨削碳化钨合金的最优工艺方案,在该方案指导下,完成了碳化钨合金的非球面模芯超精密磨削实验。最终得到的碳化钨合金模芯的表面粗糙度平均值为3.379 nm,验证了优化方案的有效性。
超精密磨削 表面粗糙度 工艺优化 有限元仿真 碳化钨合金 ultra-precision grinding surface roughness process optimization finite element simulation tungsten carbide alloy 
红外与激光工程
2023, 52(7): 20220898
Author Affiliations
Abstract
1 School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350116, China
2 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130022, China
This paper proposes an experimental approach for monitoring and inspection of the formation accuracy in ultra-precision grinding (UPG) with respect to the chatter vibration. Two factors related to the grinding progress, the grinding speed of grinding wheel and spindle, and the oil pressure of the hydrostatic bearing are taken into account to determining the accuracy. In the meantime, a mathematical model of the radius deviation caused by the micro vibration is also established and applied in the experiments. The results show that the accuracy is sensitive to the vibration and the forming accuracy is much improved with proper processing parameters. It is found that the accuracy of aspheric surface can be less than 4.m when the grinding speed is 1400r/min and the wheel speed is 100r/min with the oil pressure being 1.1 MPa.
Optical aspheric surface micro-vibrations ultra-precision grinding formation accuracy grinding speed 
Photonic Sensors
2018, 8(2): 97
作者单位
摘要
1 哈尔滨工业大学 机电工程学院 精密工程研究所, 黑龙江 哈尔滨 150001
2 中国空空导弹研究院, 河南 洛阳 471009
3 哈尔滨工业大学 航天学院 光电子技术研究所, 哈尔滨 黑龙江 150080
为了实现新型红外陶瓷ALON高陡度薄壁保形非球面的超精密磨削加工, 首先根据ALON的材料属性和高陡度薄壁保形非球面的结构特性, 进行了其超精密磨削加工工艺性分析, 并基于有限元计算方法, 完成了面向ALON高陡度薄壁保形非球面的精密夹具的设计以及关键参数的优化。然后完成了ALON的超精密磨削工艺实验, 工艺实验结果表明减小工件转速和砂轮粒度都会降低ALON的平均表面粗糙度Ra值, 但砂轮粒度对磨削后ALON的表面粗糙度影响更显著。最后实现了ALON高陡度薄壁保形非球面的超精密磨削加工, 磨削后的ALON高陡度薄壁保形非球面的面形精度PV值为2 μm, 表面粗糙度Ra值可达8.6 nm。
高陡度薄壁结构 保形非球面 超精密磨削 夹具设计 high-gradient thin structure conformal aspheric ALON ALON ultra-precision grinding jig design 
光学 精密工程
2017, 25(1): 93
作者单位
摘要
大连理工大学 精密与特种加工教育部重点实验室, 辽宁 大连 116024
基于分子动力学方法,对石英玻璃进行了三维的纳米划痕仿真,用来研究其纳米加工性能。采用熔融-淬火的办法建立了石英玻璃的模型,并通过观察模型的截面图,分析了在制备过程中内部微观孔隙的形成过程和原因。在仿真过程中,观察了石英玻璃的变化和孔隙周围原子的运动,得到了切削力的曲线,重点研究了内部的微观空隙对划痕过程的影响。仿真结果表明: 当石英玻璃冷却时,由于内部共价键的重组,会形成平均半径为0.25 nm的微观的孔隙,而且其降低了石英玻璃的纳米加工性能,使得切削力的曲线发生一定程度的波动。当磨粒划过表面后,会在表面以下形成厚度为2 nm的原子密集堆积区。由于稠密区的原子共价键键长的变化,失去了原有共价键的强度,所以会形成加工的损伤层。因此在对石英玻璃超精密加工时,应采用少量多次的加工方法来提高材料的加工性能。
石英玻璃 分子动力学 超精密磨削 纳米划痕 微观孔隙 fused silica molecular dynamics ultra-precision grinding nanoscratch microscopic void 
强激光与粒子束
2015, 27(2): 024150

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!