作者单位
摘要
中国工程物理研究院 应用电子学研究所,四川 绵阳 621900
构建了典型后门耦合目标,从时域和频域两个维度对目标进行了回波特性仿真,发现目标的孔缝-腔体结构出现强耦合时回波频域波形可观察到幅度凹坑,且强耦合频率时的回波时域波形呈双峰状,与非强耦合回波存在明显差异。通过改变后门耦合目标尺寸和形态仿真验证了所发现的回波信号特征规律,利用发现的回波信号特征规律可从回波信号中提取出未知目标腔体后门强耦合微波参数。
后门 强耦合 回波信号 特征 仿真 backdoor strong coupling echo signal characteristics simulation 
强激光与粒子束
2024, 36(4): 043008
苏盈文 1陆华 1,*石首浩 1李頔琨 1[ ... ]赵建林 1,**
作者单位
摘要
1 西北工业大学物理科学与技术学院光场调控与信息感知工业和信息化部重点实验室,陕西省光信息技术重点实验室,陕西 西安 710129
2 兰州理工大学理学院,甘肃 兰州 730050
本文研究了金属光栅表面等离激元与单层二硫化钨激子的耦合共振特性。利用时域有限差分法模拟了一维金光栅/单层二硫化钨混合结构的光谱响应及电场强度分布。结果表明,金光栅表面等离激元与单层二硫化钨激子耦合可产生光谱劈裂。当改变金光栅的结构参数时,混合结构的反射光谱出现了明显的反交叉现象。采用时域耦合模理论拟合了混合结构不同参数时的反射光谱,拟合结果与数值模拟符合较好。金光栅表面等离激元与单层二硫化钨激子的耦合作用满足强耦合判据。耦合振荡器模型分析结果表明,当金光栅周期为400 nm、宽度为300 nm时,混合结构强耦合光谱的拉比劈裂为54.6 meV,其与时域耦合模理论结果一致。该工作将为表面等离激元与激子强耦合作用的深入研究与器件开发开辟新途径。
表面等离激元 一维金光栅 二硫化钨 激子 强耦合 
光学学报
2024, 44(4): 0424002
李悦 1,2王义建 1,2孙恒信 1,2,*刘奎 1,2郜江瑞 1,2
作者单位
摘要
1 量子光学与光量子器件国家重点实验室 山西大学光电研究所 山西 太原 030006
2 山西大学 极端光学协同创新中心 山西 太原 030006
强耦合是腔光力系统用于产生和观察许多宏观量子现象(如光力压缩态和纠缠态等)的基本条件,系统进入强耦合的明显标志是正交模劈裂。本文理论分析了加入光学参量放大器和相干反馈的光力系统中的正交模劈裂现象,并讨论分析了反馈回路的光学相位对正交模劈裂的影响。在不同参数情况下,如光学参量放大器参量增益、反馈分束器的反射系数和输入光功率等,模式位置和线宽随相移的变化。结果表明: 在其他参数一定时,通过调节反馈相位,初始无模式劈裂的系统随相位变化出现模式劈裂并达到最大的模式间隔,从而从弱耦合进入强耦合状态。而且,多个参数的协同调节,可有效提高模式劈裂的程度。该研究为实验上增强光力耦合强度的实验调节提供了方便,可广泛用于光力系统的弱力灵敏探测以及宏观量子态产生与测量等。
正交模劈裂 光学参量放大 相干反馈 强耦合 normal-mode splitting optical parametric amplifier coherent feedback strong coupling 
量子光学学报
2023, 29(2): 020502
作者单位
摘要
复旦大学通信科学与工程系电磁波信息科学教育部重点实验室,上海 200433
基于少模光纤的空分复用(SDM)技术是一种能将现有单模光纤通信系统的容量提高数十倍的关键技术,作为一种克服传统单模光纤通信系统容量瓶颈的有效手段,值得深入研究。本综述介绍了基于强耦合的少模光纤模分复用中的复用/解复用器、光纤放大器、少模光纤、光传输系统集成器件的关键技术及研究进展,介绍了部分较为经典的或是最新的强耦合少模光纤复用光传输系统的实验,并探讨了模分复用光传输系统的未来研究方向。
空分复用 强耦合 少模光纤 模分复用器 少模光纤放大器 集成器件 
激光与光电子学进展
2023, 60(23): 2300008
作者单位
摘要
复旦大学通信科学与工程系电磁波信息科学教育部重点实验室,上海 200433
采用少模光纤强耦合模分复用技术是大容量光纤通信系统的一种主要方案,而数字信号处理能在数字域补偿信道中带来的损伤,为信号恢复提供了灵活性并进一步提升传输容量。介绍了少模光纤强耦合通信系统中相比单模光纤系统所受到的额外损伤,并介绍了补偿损伤所使用的多输入多输出(MIMO)均衡算法、空时编码(STC)算法、干扰消除算法和最大似然估计算法的工作原理和主要研究进展,同时阐述了当前这些算法在复杂度、传输时延、光传输速率等方面仍存在局限性。结果表明,MIMO均衡算法结合STC有明显优势,在未来大容量长距离少模光纤强耦合通信系统中具有重要的应用意义。
光通信 模分复用 强耦合 少模光纤 多输入多输出均衡器 空时编码 干扰消除 
激光与光电子学进展
2023, 60(17): 1700001
作者单位
摘要
1 中国科学院上海技术物理研究所,红外物理国家重点实验室,上海 200083
2 上海科技大学 物质与科学技术学院上海 201210
光电子芯片在人工智能时代的复杂信息转换中扮演着重要角色。通过强耦合的电子-光子态可以实现光电转换的最高效率。利用电子自旋的自由度具有独特的优势。自旋的集体激发可以形成磁子,它具有长寿命和对焦耳热免疫的特性。这些特性可以通过磁子和高速光子之间的强耦合结合起来,形成 "腔-磁子极化激元(CMP)"。最近的进展集中在构建高协同性的CMP,控制CMP的辐射和传输,理解CMP的完美吸收机制,以及开发片上CMP原型器件的电调谐维度和逻辑操作功能。这些围绕CMP相干耦合动力学的研究有望推动低损耗光电器件和前沿信息处理技术的发展。
自旋电子学 极化激元 磁子 强耦合 综述 Strong coupling polariton magnon spintronics survey 
红外与毫米波学报
2023, 42(5): 622
作者单位
摘要
深圳大学电子与信息工程学院射频异质异构集成全国重点实验室,广东 深圳 518060
金属纳米颗粒除了用作光学谐振腔,也是一类声学谐振腔,具有非常优异的声学振动性能。本文对金属声学谐振腔的相干声学振动及应用进行了概述。首先,介绍了金属纳腔相干声学振动的超快光学激发机制,并讨论了瞬态吸收光学显微镜对单个纳腔声学振动的探测;其次,阐述了几种简单金属声学纳腔(包括纳米球、纳米棒、纳米片)的振动模式、振动频率以及它们与纳腔尺寸、形状之间的关系;然后,重点讨论了金属纳腔间的声学振动强耦合现象,从多种纳腔耦合体系的实验出发,并从理论上分析了其中的耦合模式和耦合物理机制;接下来,对高频声学纳腔的应用进行了举例分析,详细讨论了高频声学振动在纳米流体学方面的应用;最后,对高频声学纳腔的未来发展趋势与应用前景进行了展望。
超快光谱学 金属纳腔 相干声学振动 声子学器件 强耦合 
光学学报
2023, 43(16): 1623015
作者单位
摘要
1 同济大学物理科学与工程学院,上海 200092
2 苏州大学物理科学与技术学院,江苏 苏州 215006
详细研究了两原子腔量子电动力学系统中的双光子吸收现象。在自由空间中,由于存在量子干涉效应,两个不同频率的原子无法被同时激发。但是,在强耦合的腔量子电动力学系统中,原子与腔场间的耦合导致系统中出现新的跃迁通道,从而使双原子激发成为可能。通过数值模拟主方程,详细研究了两原子腔量子电动力学系统的光子激发谱,并与双光子激发谱进行比较,证明了双光子激发的可能性。通过进一步分析光子的二阶关联函数、双原子激发概率,揭示了腔内光子的统计性质和实现双原子激发的物理机制。
物理光学 强耦合 两原子腔 腔量子电动力学 双光子过程 
光学学报
2022, 42(21): 2126006
作者单位
摘要
1 大连工业大学光子学研究所, 辽宁 大连 116034
2 大连工业大学基础教学部, 辽宁 大连 116034
利用原子-腔超强耦合光力系统, 通过调制光力耦合, 开展了力学振子的宏观量子叠加态的制备与特性研究。首先利用 Wei-Norm 方法给出了演化算符的计算过程, 并针对任意原子-腔初始态情况, 给出了整个系统演化波函数的解析形式, 结果表明假设对原子—腔子系统进行测量, 在一定条件下, 振子将处于宏观量子叠加态。进一步给出了力学振子宏观量子叠加态的 Wigner 函数的解析表达式, 并对影响宏观量子态量子性的可能因素进行了理论计算和分析。最后讨论了原子-腔不同的初始态对宏观量子相干性强弱的影响, 并给出宏观量子相干性最强的初态参数; 还讨论了原子-腔耦合强度对宏观量子叠加态的量子相干性的影响, 发现耦合强度越强, 宏观量子叠加态的量子相干性就越强。
量子光学 强耦合光力系统 腔光力系统 宏观量子叠加态 宏观量子相干性 quantum optics ultra-strong coupled opto-mechanical system cavity opto-mechanical system preparation of macroscopic quantum superposition s macroscopic quantum coherence 
量子电子学报
2022, 39(4): 598
作者单位
摘要
1 量子光学与光量子器件国家重点实验室, 山西大学光电研究所, 极端光学省部共建协同创新中心, 山西 太原 030006
2 山西大学大数据科学与产业研究院, 山西 太原 030006

光学腔与原子强耦合系统是量子物理研究的基本系统,不但具有重要的物理意义,而且为量子信息、量子计算和量子精密测量中关键技术的产生和关键器件的研发提供了理想系统。强耦合腔与原子相互作用实验从20世纪90年代开始发展,经过多年的研究,在单原子与光学腔强耦合和原子系综与光学腔的耦合研究方面取得了重大进展。随着多原子阵列量子操控技术的进步,可控的多原子阵列与光学微腔强耦合系统近年来成为腔量子电动力学的重要研究方向。然而,目前实现确定性可控的多原子阵列与腔的强耦合仍面临巨大的技术挑战,可控原子数还停留在两个。简要回顾了近年来光频区强耦合腔量子电动力学系统在上述方面的主要实验进展和相应的实验方案,并展望了未来的发展。

量子光学 腔量子电动力学 光学微腔 强耦合 量子调控 
光学学报
2022, 42(3): 0327005

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!