刘畅 1,2陈昌荣 2,3王乾廷 1,2,4,*练国富 3[ ... ]戴继成 5
作者单位
摘要
1 福建工程学院材料科学与工程学院,福建 福州 350118
2 福建省精确成型制造工程研究中心,福建 福州 350118
3 福建工程学院机械与汽车工程学院,福建 福州 350118
4 福建省新材料制备与成型技术重点实验室,福建 福州 350118
5 海安橡胶集团股份公司,福建 莆田 351254
本文基于三周期极小曲面(TPMS)进行不同单元类型梯度孔隙率结构的优化设计,并进行静力学及粉末流体仿真,用于对比两种单元的应力集中程度和粉末流通能力。通过对比不同梯度孔隙率的两种单元发现,由于支柱设计类型不同,primitive单元相较于gyroid单元有着更优异的力学性能;5%梯度孔隙率(45%~50%)设计在两种单元中均有着最优的力学性能;相对于均匀孔隙率的gyroid单元多孔结构,5%梯度孔隙率primitive单元多孔结构的杨氏模量为7.34 GPa,仅提升了约3.93%,但其平均屈服强度可达到444.85 MPa,大幅提升约63.42%,平均抗压强度为606.57 MPa,提升了75.20%。本研究发现,屈服强度与有效支柱尺寸的相关性较强,抗压强度与应力集中程度的相关性较强。选择合适的多孔单元类型在与加载方向成45°夹角的位置进行孔隙率梯度调整,可使整体结构具有合适的孔径和支柱直径、优良的抗压能力、较小的应力集中程度以及较优异的粉末流通能力,最终可显著提升整体结构的力学性能。
激光技术 激光选区熔化 Ti-6Al-4V 多孔结构 梯度孔隙率 压缩力学性能 
中国激光
2022, 49(16): 1602010

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!