作者单位
摘要
1 天津大学 精密测试技术及仪器全国重点实验室,天津 300072
2 北京卫星制造厂有限公司,北京 100094
双目面结构光三重扫描是在条纹投影双目视觉重建的基础上,追加左、右相机与投影仪构成的单目视觉系统重建点云,在反光和凹凸起伏等表面测量应用上具有更好的点云完整性优势。但由于环境温度变化影响,投影仪产生较大温度漂移,导致双目重建点云与单目重建点云发生“分层”现象。为此,文中提出了一种基于正交条纹投影的三重扫描系统温漂在线补偿方法,通过投影仪投射正交条纹来构建双目重建点在投影仪图像中准确的映射关系,并基于双目重建点在投影仪图像中的重投影误差最小化目标函数来求解温漂补偿后的投影仪最优外参数。最后,以金属球和汽车零件作为被测对象进行实验验证,在不依靠标定板等先验信息及繁琐标定流程基础上,所提在线快速补偿方法可以使得双目点云与单目点云温漂量分别减小78.2%和94.3%,极大减轻了温度变化对于三重扫描点云数据拼接影响。
三重扫描 投影仪 正交条纹 温漂补偿 triple scan projector orthogonal fringe temperature drift compensation 
红外与激光工程
2024, 53(1): 20230456
作者单位
摘要
1 上海电力大学自动化工程学院,上海 200090
2 新南威尔士大学电气工程与电信学院,澳大利亚 新南威尔士州悉尼 2052
首先,充分考虑温漂序列数据前后之间的强相关性,在对光纤法布里-珀罗可调滤波器(FFP-TF)的温漂进行建模的过程中引入时间权重的概念,为每个样本赋予不同的时间属性。然后,采用支持向量机(SVM)作为弱学习器对温漂样本进行建模,使用AdaBoost框架对多个SVM模型进行集成学习。在集成预测过程中,不仅每个模型的预测性能会影响样本的权重分配,而且样本的时间属性也会影响样本权重的更新。实验结果表明:在2 ℃的窄范围缓慢变温环境中,传统AdaBoost-SVM算法的最大温漂补偿误差为10.83 pm,而基于时间权重的AdaBoost-SVM的最大温漂补偿误差降低到7.04 pm;在15 ℃的温度范围下,传统AdaBoost-SVM算法的最大误差达到11.57 pm,基于时间权重的AdaBoost-SVM的最大误差仅为4.05 pm。与传统硬件方法相比,所提出的方法不需要额外硬件,为可调谐滤波器的温漂补偿提供了一种新的思路。
光栅 光纤布拉格光栅 法布里-珀罗滤波器 温漂补偿 时间加权 集成学习 
光学学报
2023, 43(21): 2105001
作者单位
摘要
1 上海电力大学自动化工程学院,上海 200090
2 新南威尔士大学电子信息工程学院,澳大利亚 悉尼 2052
针对光纤法布里-珀罗可调谐滤波器(FFP-TF)在环境温度变化时输出波长持续漂移,引起光纤布拉格光栅(FBG)解调不稳定的现象,提出一种基于改进AdaBoost算法的温度稳定FBG解调方法。采用AdaBoost集成学习构建可调谐滤波器的温漂模型,在迭代过程中提出基于误差率差值的弱学习器权重更新方法,以增强弱学习器权重与其预测误差之间的关联,提高多个弱学习器的集成效率。实验结果表明,传统AdaBoost补偿后可调谐滤波器在温度变化环境中的最大波长漂移为14.03 pm,而基于权重更新的AdaBoost算法补偿后最大波长漂移为4.75 pm。相比传统的基于标准具和气室的温漂补偿方法,所提补偿方法不需要添加额外元件,补偿精度高。
光纤光学 光纤光栅解调 法布里-珀罗滤波器 温漂补偿 AdaBoost 权重更新 
光学学报
2023, 43(3): 0306004
作者单位
摘要
1 上海电力大学自动化工程学院, 上海 200090
2 新南威尔士大学电气工程与电信学院, 新南威尔士州 悉尼 2052
光纤法布里-珀罗可调滤波器(FFP-TF)是组成光纤布拉格光栅(FBG)传感器解调系统的核心器件之一,其稳定性对解调精度的提高至关重要,而温度漂移是影响其稳定性的关键因素之一。针对实际应用中遇到的FFP-TF在变温环境下产生的透射波长漂移问题,提出了一种基于集成移动窗口的温度漂移补偿方法。利用最小二乘支持向量机对透射波长和温度之间的非线性关系进行了建模,并在训练样本中建立了移动窗口。此外,为了挖掘更多的训练样本过程信息,提出了采用神经网络对各个移动窗口的补偿结果进行加权集成的方法。实验结果表明,当未引入集成移动窗口时,解调值的最大测量误差为±13.5 pm。在引入集成移动窗口后,解调值的最大测量误差为±0.82 pm,即所提方法有效提高了光纤光栅传感中可调滤波器解调的温度稳定性。
光纤光学 光纤光栅解调 集成移动窗口 温漂补偿 法布里-珀罗滤波器 最小二乘支持向量机 
光学学报
2021, 41(23): 2306005

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!