周庆军 1,*严振宇 1张京京 1衣凤 2[ ... ]郭宁 3,4
作者单位
摘要
1 首都航天机械有限公司,北京 100076
2 北京科技大学新金属材料国家重点实验室,北京 100083
3 齐鲁工业大学(山东省科学院)机械工程学院,山东 济南 250353
4 山东省机械设计研究院,山东 济南 250031
激光定向能量沉积(LDED)增材制造技术由于成形效率高、材料送进方式灵活、成形自由度高等特点,非常契合当前及未来航天装备结构大型化、整体化、轻量化、高精度的发展趋势,并已在运载火箭、载人飞船、火箭发动机等领域实现牵引性应用。总结当前铝合金及其复合材料、钛合金及其复合材料、镍基高温合金及其复合材料等3类航天装备结构主体材料的LDED研究现状,在此基础上,梳理出LDED工艺的发展方向及研究进展。重点介绍航天装备主承力结构、异质合金一体化结构、集成流道整体化结构等3类典型结构LDED制造难点、研制及应用进展。最后,对LDED增材制造技术材料、工艺及装备等的发展方向进行了展望。
激光技术 增材制造 激光定向能量沉积 金属材料 大型构件 航天运载器 
中国激光
2024, 51(10): 1002303
作者单位
摘要
1 青岛理工大学山东增材制造工程技术研究中心,山东 青岛 266520
2 西北工业大学凝固技术国家重点实验室,陕西 西安 710072
3 沈阳航空航天大学机电工程学院,辽宁 沈阳 110136
高频窄脉冲电解加工技术能有效提高加工精度和表面质量,在镍基高温合金等难加工金属材料的精密制造方面有着广泛的应用。然而,对于微观组织极不均匀的激光定向能量沉积构件,其加工质量尚不清晰,尤其是采用无水电解液时。以激光定向能量沉积Inconel 718合金为研究对象,采用频率为30~100 kHz、占空比为30%~80%的高频窄脉冲电流以及饱和NaCl乙二醇电解液进行射流电解加工实验。结果表明:沉积态Inconel 718合金组织由γ基体相、Nb偏析区与枝晶间相(主要为γ/Laves共晶相)组成;在10.50 A/cm2的电流密度下,加工区表面粗糙度随脉冲频率的增加而增大,且脉冲频率为30 kHz时表面粗糙度最小(Ra=1.562 μm),加工精度最高;表面粗糙度随占空比的增加先减小后增大,占空比为50%时表面粗糙度最小,占空比为60%时加工精度最高;而在直流模式下,表面粗糙度随电流密度的增大而降低,且电流密度为10.50 A/cm2时,表面质量最优(Ra=0.526 μm),这是由于高电流密度更容易诱导表面“过饱和盐膜”的形成,从而有效抑制选择性溶解,降低表面粗糙度。但在加工精度方面,高频窄脉冲电流模式的加工定域性较好。最后,基于“盐膜”理论和双电层模型,揭示了高频窄脉冲电流模式下沉积态Inconel 718合金的微区阳极溶解机理,为提高激光增材制造镍基高温合金射流电解加工表面质量提供了理论支撑和实验依据。
激光技术 激光定向能量沉积 Inconel 718镍基高温合金 射流电解加工 表面完整性 加工精度 
中国激光
2024, 51(10): 1002318
罗子祺 1王长雨 1王钊 1林福兵 1[ ... ]罗开玉 1,2,**
作者单位
摘要
1 江苏大学机械工程学院,江苏 镇江 212013
2 重庆大学机械传动国家重点实验室,重庆 400044
激光定向能量沉积(LDED)是受损大型关键构件几何特征修复和性能强化的典型修复技术,但其目前仍面临残余应力、孔洞和裂纹等问题。激光冲击强化(LSP)为解决以上问题提供了新思路。笔者以H13钢粉作为待沉积粉末,采用LDED技术对受损的45钢基体进行修复;然后利用LSP后处理强化LDED修复层,以解决传统LDED修复材料的质量问题。结果表明:随着LDED激光功率增大,H13钢修复层的晶粒逐渐细化,渗碳体溶解,耐磨性提升;LSP后处理会使修复层近表层的晶粒明显细化,显著降低LDED修复试样的摩擦因数,进一步提升其耐磨性。最后,笔者系统揭示了LDED+LSP激光复合再制造工艺诱导的微观组织演化(晶粒细化和渗碳体溶解)及其增强修复层耐磨性的机制。
激光技术 激光定向能量沉积 激光冲击强化 激光复合再制造 微观组织 耐磨性 
中国激光
2024, 51(16): 1602202
作者单位
摘要
1 1.大连理工大学 高性能精密制造全国重点实验室, 大连 116024
2 2.中国人民解放军95939部队, 沧州 061736
3 3.深圳市鑫金泉精密技术股份有限公司 研发部, 深圳 518055
4 4.山东大学 机械工程学院, 济南 250061
Al2O3-TiCp(AT)复相陶瓷材料以其优异的综合力学性能而被广泛用作金属切削刀具材料。针对AT材料传统烧结方法在能耗及周期方面的局限, 本工作利用激光定向能量沉积技术开展了AT复相陶瓷材料直接增材制造的研究, 系统探讨了不同TiCp比例对复相陶瓷材料微观结构和力学性能的影响。结果表明TiCp颗粒均匀分布在成型样件的基体中, 掺杂TiCp细化了Al2O3晶粒。同时, 由于TiCp与Al2O3基体的热膨胀失配引起裂纹出现偏转、贯穿颗粒等现象, 消耗了裂纹扩展能量, 进而有效抑制了AT材料直接增材过程中的裂纹扩展行为。掺杂TiCp颗粒对熔池形成冲击, 在一定程度上加快了气体的逸出速率, 进而提高了材料的相对密度。但TiCp含量过高将加剧其与Al2O3基体在高温时的化学反应, 生成的气体使复合材料中出现较大气孔并降低了材料部分力学性能。TiCp质量分数为30%的复合材料的相对密度达到96.64%、平均显微硬度达到21.07 GPa和断裂韧性达到4.29 MPa·m1/2
复相陶瓷 增材制造 激光定向能量沉积 微观结构 力学性能 composite ceramic additive manufacturing laser directed energy deposition microstructure mechanical property 
无机材料学报
2023, 38(10): 1183
俞皓捷 1,2戴冬华 1,2石新宇 1,2历彦泽 1,2[ ... ]顾冬冬 1,2,*
作者单位
摘要
1 南京航空航天大学材料科学与技术学院,江苏 南京 210016
2 南京航空航天大学江苏省高性能金属构件激光增材制造工程实验室,江苏 南京 210016
针对曲面激光增材制造钛/铝异质材料温度场和熔池形貌的调控难题,采用有限元模拟方法,对激光定向能量沉积(LDED)钛/铝异质材料起始及稳态沉积过程进行数值模拟,通过控制变量研究了激光功率、扫描速度对熔池形貌、宽深比及温度场的影响规律,并进行了实验验证。研究结果表明:LDED成形钛/铝异质材料的熔池热行为、形貌等随激光参数发生显著变化,当扫描速度为0.32 rad/s时,随着激光功率从1400 W增至2300 W,熔池最高温度从1525.5 ℃升至3289.8 ℃,熔池的体积从1.16 mm3增至7.73 mm3,熔池宽深比与激光体能量密度呈负相关。当激光功率为2000 W,扫描速度为0.32 rad/s时,Al-Ti异质材料层的熔池宽深比最大,为1.84,起始堆积Ti层的宽深比次之,为1.42,稳定堆积Ti层的宽深比最小,为1.22。实验得到的熔池宽度为0.61 mm,熔池形貌与有限元模拟熔池形貌吻合良好。
激光技术 激光定向能量沉积 温度场模拟 Ti/Al金属复合 热行为 熔池形貌 
中国激光
2023, 50(8): 0802302
作者单位
摘要
大连理工大学三束材料改性教育部重点实验室,辽宁 大连 116024
利用团簇结构模型设计了五种不同Nb含量的Ti-Zr-Nb合金,并在纯钛基板上进行了激光定向能量沉积试验。系统分析了Nb含量对沉积态合金凝固组织和性能的影响规律。结果表明,不同成分沉积态合金均由单相的β-Ti近等轴晶组成。但随着Nb含量的增加,其在β-Ti中的固溶量增加,合金成分过冷度增大,因此β-Ti晶格畸变增大,晶粒细化。受组织演化的影响,沉积态合金的力学、摩擦磨损和耐蚀性能随Nb含量的增加呈现出递增的变化趋势,而成形性呈现出递减的变化趋势。因此,应将Nb含量(原子数分数)限制为3.75%~5.00%,以使合金的力学、摩擦学、化学与成形性能之间实现良好的平衡。
激光技术 激光定向能量沉积 钛合金 Ti-Zr合金体系 组织 性能 
中国激光
2022, 49(22): 2202016
作者单位
摘要
1 新加坡国立大学工程学院,新加坡 117575
2 华南理工大学机械与汽车工程学院 , 广东 广州 510640
3 北京理工大学机械与车辆工程学院,北京 100081
采用增材制造技术将异种材料沉积到常规生产的规则半成品零件上的混合制造方式是实现大尺寸复杂双金属结构材料高效制造的有效方式之一。而实现此目标的主要前提之一是保证良好的界面结合质量。因此,采用激光定向能量沉积(DED)技术将A131 EH36沉积到传统轧制的AISI 1045钢上制备双金属结构,并对包含界面区的微观组织演变、力学性能以及切削响应进行研究,同时探究了热处理对性能的影响。结果表明:A131 EH36/AISI 1045双金属结构内部形成了宽度约为0.5 mm的无裂纹和未熔合缺陷的过渡区,表现出了优异的界面冶金结合;过渡区内包含了相互嵌合的组织细化区、组织粗化区、双重热影响区和热影响区,并在热处理后消失;过渡区的硬度从AISI 1045一侧的(182.0±11.7)HV逐渐增加到了A131 EH36一侧的(297.1±20.1)HV,热处理后的过渡区的硬度波动显著降低,在190 HV上下波动;直接沉积的双金属结构的拉伸强度和屈服强度略高于较弱的AISI 1045钢,分别达到了(629.0±1.1)MPa和(471.4±9.2)MPa,延伸率为17.9%;热处理后,双金属结构的屈服强度和延伸率分别提升了21.5%和23.5%;断口分析表明,双金属结构样品在远离界面区的一侧失效,表现为韧性断裂,且断裂后样品的原始界面区域没有出现裂纹和孔缺陷,展示了良好的界面结合性能;切削结果表明,DED A131 EH36的切削力比轧制的AISI 1045更平稳且低,最大切削力可降低64.1%,且前者的切削表面质量较好,表面粗糙度值为(107.0±10.4)nm,低于后者的(111.8±13.6)nm。
激光技术 激光定向能量沉积 双金属结构 微观组织 力学性能 切削 
中国激光
2022, 49(14): 1402304
作者单位
摘要
华南理工大学机械与汽车工程学院,广东 广州 510641
为了研究送粉式激光增材和铣削减材复合制造零件的表面质量及力学性能,以316L不锈钢粉末为原料,通过“增材-减材-增材-减材”交替循环的方式进行样件的制造,并对其表面粗糙度、显微硬度和力学性能进行分析测试。结果表明:送粉式激光增材和铣削减材复合制造样件的表面粗糙度随着铣削速度的增大而下降,随着每齿进给量的增加而增大;送粉式激光增材和铣削减材复合制造样件的表面粗糙度较传统工艺生产的基板试样更低,显微硬度较增材制造样件和锻造件更高,抗拉强度和屈服强度比增材制造样件分别提高了5%和60.5%,但断后伸长率却有所降低。送粉式激光增材和铣削减材复合制造技术能够制造出具有高表面质量和优良力学性能的零件,可直接应用于316L不锈钢轮胎模具等零件的制造。该技术充分融合了增材制造的高材料利用率、高自由度以及减材制造的高精度、高表面质量优势,可以获得结构复杂、形状精度和表面质量高的零件。
激光技术 激光定向能量沉积 铣削加工 复合制造 316L不锈钢 表面质量 力学性能 
激光与光电子学进展
2022, 59(1): 0114009
刘海方 1,2苏海军 1,2,*申仲琳 1姜浩 1[ ... ]傅恒志 1
作者单位
摘要
1 1.西北工业大学 凝固技术国家重点实验室, 西安 710072
2 2.西北工业大学深圳研究院, 深圳 518057
超高温氧化物共晶陶瓷具有优异的高温强度、高温蠕变性能、高温结构稳定性以及良好的高温抗氧化和抗腐蚀性能, 成为1400 ℃以上高温氧化环境下长期服役的新型候选超高温结构材料之一, 在新一代航空航天高端装备热结构部件中具有重要的应用前景。基于熔体生长技术, 以选择性激光熔化和激光定性能量沉积为代表的激光增材制造技术具有一步快速近净成形大尺寸、复杂形状构件的独特优势, 近年来已发展成为制备高性能氧化物共晶陶瓷最具潜力的前沿技术。本文从工作原理、成形特点、技术分类等方面概述了基于熔体生长的两种典型激光增材制造技术, 综述了激光增材制造技术在超高温氧化物共晶陶瓷制备领域的研究现状和特点优势, 重点介绍了选择性激光熔化和激光定向能量沉积超高温氧化物共晶陶瓷在激光成形工艺、凝固缺陷控制、凝固组织演化、力学性能等方面的研究进展。最后, 指出了实现氧化物共晶陶瓷激光增材制造工程化应用亟需突破的关键瓶颈, 并对该领域未来的重点发展方向进行了展望。
氧化物共晶陶瓷 激光增材制造 选择性激光熔化 激光定向能量沉积 综述 oxide eutectic ceramic laser additive manufacturing selective laser melting laser directed energy deposition review 
无机材料学报
2021, 37(3): 255
刘化强 1,2,*刘江伟 1,2国凯 1,2孙杰 1,2
作者单位
摘要
1 山东大学机械工程学院, 高效洁净机械制造教育部重点实验室, 山东 济南 250061
2 山东大学航空构件制造技术与装备研究中心, 山东 济南 250061
针对目前激光增材制造Inconel 718成形质量以及力学性能难以控制问题, 采用激光定向能量沉积技术在H11钢表面制备了Inconel 718沉积层, 研究激光沉积工艺参数对沉积层特征、显微硬度的影响。采用正交试验分析了激光功率、扫描速度、送粉速率对沉积层几何形貌、宽高比、稀释率以及显微硬度的影响规律, 并以宽高比、稀释率、显微硬度为目标对工艺参数进行了优化。获得的工艺参数为:激光功率1 800 W, 扫描速度10 mm/s, 送粉速率19.71 g/min。采用优化的工艺参数可在H11钢表面获得质量良好的沉积层。
激光定向能量沉积 工艺参数 正交试验 显微硬度 laser directed energy deposition process parameters orthogonal experiment Inconel 718 Inconel 718 microhardness 
应用激光
2021, 41(1): 13

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!