作者单位
摘要
郑州大学物理学院,郑州 450052
基于化学气相沉积法生长出的单壁碳纳米管(SWNTs)薄膜,利用聚二甲基硅氧烷(PDMS)作为基底,制备出一种具有三明治结构的柔性应变传感器,具有良好的光学透明性和电阻响应。探究了不同碳纳米管薄膜层数对传感器性能的影响。实验表明,随着SWNTs薄膜层数的增加,应变传感器的透光性和电阻响应逐渐降低,由单层SWNTs薄膜得到的应变传感器具有最大的电阻变化率,在10%应变下可达100%,即使在微小应变(2%)下仍能检测到明显的电阻变化(18%)。该应变传感器具有良好的耐久性,可以监测人体关节的运动状态,在柔性电子皮肤等领域具有潜在的应用。
单壁碳纳米管薄膜 聚二甲基硅氧烷 透光性 应变传感器 single wall carbon nanotubes (SWNTs) film polydimethylsiloxane (PDMS) light transmittance strain sensor 
人工晶体学报
2020, 49(5): 854
郑苗苗 1,2,*李亚辉 2姚建 2邱松 2[ ... ]李清文 1,2
作者单位
摘要
1 上海科技大学 物质科学与技术学院, 上海 201210
2 中国科学院苏州纳米技术与纳米仿生研究所 先进材料研究部, 江苏 苏州 215123
高纯度的单手性单壁碳纳米管对于下一代碳基电子器件的发展具有重要意义。利用聚[(9, 9-二辛基芴-2, 7-二基)-共-联吡啶](PFO-BPy)、聚(9,9-二辛基芴-2,7-二基)(PFO)和聚(9,9-二辛基芴-共苯并噻二唑)(PFO-BT)三种聚合物在有机相中分别分选出(6,5), (7,5)和(10,5)三种手性单壁碳纳米管, 具有较高纯度以及浓度, 并去除了超过99%的残留分散剂。使用上述溶液沉积获得高均匀性和高密度的碳纳米管薄膜, 以此作为器件沟道材料, 制备了手性单壁碳纳米管场效应晶体管阵列。结果显示, 大直径的(10,5)手性碳纳米管晶体管器件具有较好的电学性能, 其迁移率最高达16cm2?V-1?s-1, 开关比达107。
单壁碳纳米管 手性分离 碳纳米管薄膜 场效应晶体管器件 single-walled carbon nanotubes chiral separation carbon nanotube films field effect transistor 
半导体光电
2020, 41(3): 344
作者单位
摘要
1 哈尔滨理工大学机械动力工程学院, 黑龙江 哈尔滨 150080
2 哈尔滨工业大学机电工程学院, 黑龙江 哈尔滨 150001
采用不同的飞秒激光参数(波长、脉冲能量、脉冲数量)加工碳纳米管薄膜微孔,通过拟合获得不同波长下的单脉冲烧蚀阈值,飞秒激光中心波长为1030 nm时的烧蚀阈值为25 mJ·cm -2,波长为515 nm时的烧蚀阈值为39.7 mJ·cm -2。分析了激光参数对材料加工结果的影响规律,结果表明,脉冲能量是影响烧蚀孔径的主要因素,波长较短时可以产生更大区域的碳纳米管抛出物面积。采用拉曼光谱对不同波长下切割得到的材料切口处进行测试,测试结果表明,波长为515 nm的飞秒激光更适合用于碳纳米管薄膜的切割。分析了脉冲能量与扫描速度对切割质量的影响规律,最终在优选的工艺参数下获得了良好的切割质量。
激光技术 飞秒激光 碳纳米管薄膜 烧蚀阈值 微孔形貌 
中国激光
2019, 46(9): 0902002
作者单位
摘要
1 哈尔滨理工大学 电子科学与技术系, 黑龙江 哈尔滨 150080
2 哈尔滨理工大学 工程电介质及其应用教育部重点实验室, 黑龙江 哈尔滨 150080
利用化学气相沉积法制备了三种类型多个超有序排列的多壁碳纳米管薄膜样品, 通过太赫兹时域光谱技术, 获取相位和振幅信息, 详细研究了薄膜在太赫兹波段的传输特性。结果表明: 超有序多壁碳纳米管薄膜在纳米管轴向方向与垂直于轴向方向表现出明显的光、电各向异性特性; 测试的介电常数实部为负, 虚部为正, 证实了制备的薄膜具有金属性; 薄膜具有的各向异性为研究其偏振特性提供了直接证据, 随着薄膜厚度的增加, 偏振度和消光比增加, 其9 ?滋m厚的自由薄膜度可以获得99%的偏振度。研究结果对开展超有序多壁碳纳米管薄膜在太赫兹偏振器、调制器与光开关等领域的研究有重要指导意义。
多壁碳纳米管薄膜 太赫兹 各向异性 偏振 multi-walled carbon nanotubes film terahertz anisotropy polarization 
红外与激光工程
2017, 46(12): 1221001
作者单位
摘要
1 郑州航空工业管理学院 理学院, 郑州 450046
2 华北水利水电大学 数学与信息科学学院, 郑州 450011
3 中国工程物理研究院 流体物理研究所, 四川 绵阳 621900
采用酞菁铁高温裂解法在镀有镍金缓冲层的硅基底上生长了碳纳米管薄膜(Ni/Au-CNT), 并采用二极结构在相同的主Marx电压下研究了其强流脉冲发射稳定性.结果表明: 在脉冲电压峰值为1.60~1.74 MV(对应的脉冲电场峰值为11.43~12.43 V/μm)时, Ni/Au-CNT薄膜首次发射的电流峰值可达331.2A; Ni/Au层不仅能提高CNT薄膜的强流脉冲发射电流峰值, 还能提高其发射稳定性; 当冷阴极重复脉冲发射7次时, Ni/Au-CNT的脉冲电流峰值衰减到初值的72%, 而Ni–CNT和Si-CNT脉冲电流峰值分别衰减到初值的62%和32%.
强流脉冲发射 Ni/Au层 碳纳米管薄膜 稳定性 归一化电流 Intense pulsed emission Ni/Au composite buffer layer Carbon nanotube film Stability Normalized current 
光子学报
2017, 46(3): 0331001
作者单位
摘要
1 上海海洋大学 工程学院, 上海 201306
2 上海交通大学 微纳米科学技术研究院, 上海 200240
结合电泳沉积和激光纳米焊接技术在常温下成功制备了铝基单壁碳纳米管(SWCNTs-Al)薄膜。首先,将单壁碳纳米管电泳沉积到铝片基底上,再使用皮秒脉冲激光构建二者的可靠连接。对SWCNTs-Al薄膜进行场发射性能测试,开启电压从焊接前的5.1 V/μm降低到2.1 V/μm,发射电流密度显著提高且更加稳定。这主要是激光纳米焊接后界面接触阻抗减小,场致电子发射更容易实现的结果。基于SWCNTs-Al薄膜的表面形貌图和场发射性能测试结果,确定了最优的激光纳米焊接参数。
激光纳米焊接 单壁碳纳米管薄膜 阴极 场发射 laser nanowelding SWCNTs-Al film cathode field emission 
强激光与粒子束
2015, 27(12): 124103
作者单位
摘要
重庆大学光电工程学院光电技术及系统教育部重点实验室, 重庆 400044
利用真空抽滤法制备出具有宽频域吸光性能,且可应用于金属和塑料等多种环境的自支持碳纳米管薄膜(CNF);利用表面活性剂辅助制备了稳定的碳纳米管分散液,利用真空抽滤法在混合纤维素滤膜上得到了不同厚度的碳纳米管薄膜,并利用氙灯加热法实现了薄膜的完美分离。结果表明:碳纳米管分散液经真空抽滤后可在滤膜上形成具有纠缠交错呈平面网状结构的连续均匀各向同性薄膜,薄膜厚度与抽滤碳纳米管沉积量成正比关系;薄膜的光吸收率随着方阻的增大而增大,实验观察结果与用电磁场理论分析结果相符;350~2500 nm波段宽频域的光吸收率为94%~98%,并具有一定的提高空间。
薄膜 碳纳米管薄膜 真空抽滤法 吸光性能 电磁场理论 
中国激光
2013, 40(s1): s107001
作者单位
摘要
天津大学精密仪器与光电子工程学院 光电信息技术教育部重点实验室, 天津 300072
为研究单壁碳纳米管(SWCNT)薄膜的三阶非线性光学性质,采用旋转涂覆法在石英玻片上制备出包含SWCNT和聚甲基丙烯酸甲酯(PMMA)的聚合物薄膜。测得薄膜的线性透射谱,并观察了薄膜的表面形貌。为提高测量SWCNT薄膜三阶非线性系数的准确度,研究了Z扫描法测量材料的非线性系数时相关参量变化对测量准确度的影响,并搭建Z扫描系统,研究了自制薄膜的三阶非线性光学性质。通过对实验数据的模拟和计算,得到自制碳纳米管薄膜的非线性吸收系数(β)、三阶非线性折射系数(γ)分别为-7.8×10-7 cm/W、-6.4×10-11 cm2/W,三阶非线性极化率为2.06×10-9 esu。证明SWCNT/PMMA薄膜具有较强的非线性光学特性。
测量 非线性光学 三阶非线性系数 Z扫描法 单壁碳纳米管薄膜 准确度 
激光与光电子学进展
2012, 49(9): 091202
作者单位
摘要
广东工业大学材料与能源学院, 广东 广州 510006
采用热丝和射频等离子体复合化学气相沉积设备(PE-HF-CVD),以CH4、H2和N2为反应气体,在较低衬底温度下(500 ℃),用简单的催化剂制备方法——旋涂法在硅片上涂覆Ni(NO3)2溶液,经热处理及H2还原后的Ni颗粒为催化剂,在硅衬底上制备出了垂直于硅片且定向生长的碳纳米管薄膜。扫描电子显微镜(SEM)和透射电子显微镜(TEM)结果显示,1 mol/l的硝酸镍溶液旋涂硅片所得催化剂制得的碳纳米管管径为30~50 nm,长度超过4μm,定向性好,并用拉曼光谱(Raman)对不同摩尔浓度Ni(NO3)2溶液条件下制备的碳纳米管薄膜样品进行了表征。
薄膜光学 定向碳纳米管薄膜 低温制备 热丝射频等离子体增强化学气相沉积 旋涂法 
光学学报
2008, 28(9): 1824

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!