液晶与显示, 2019, 34 (6): 564, 网络出版: 2019-08-07   

IGZO-TFT钝化层三元复合结构过孔刻蚀

Ternary composites of passivation layer for hole plasma etching of IGZO-TFT
作者单位
重庆京东方光电科技有限公司, 重庆400700
摘要
IGZO-TFT钝化层设计三元复合过孔结构, 出现了20%过孔相关不良。本文以CF4/O2为反应气体, 采用控制变量法, 从功率、气体成分和比例、压力等方面对氧化物TFT钝化层的电感耦合等离子体刻蚀机理进行研究。当钝化层为SiO2或SiNx单组分时, 氧气可以促进刻蚀反应; 随着CF4/O2比例增加, 刻蚀速率先增大后趋于稳定, 并且当CF4/O2=15/8时, 刻蚀速率和均一性达到最优; 与源功率相比, 提高偏压功率在提升刻蚀速率中起主导作用, 同时均一性控制在15%以内; 当压力在4 Pa以内时, 刻蚀速率随着压力的降低而增加。据此分析, 对复合结构SiNx/SiO2、SiO2/SiNx、SiNx/SiO2 /SiNx的刻蚀过程进行优化, 得到了形貌规整、无残留物的过孔, 过孔相关不良得到100%改善。
Abstract
For ternary composite via-hole in passivation layer, 20% relevant defection happened in IGZO TFT manufaction. In this paper, the inductively coupled plasma etching mechanism of the oxide TFT passivation was investigated. Combined the reaction gas CF4/O2 with the control variable method, the impact of power, gas composition, gas ratio and pressure on the project was studied. When the passivation is a single component of SiO2 or SiNx, adding oxygen to the reaction gas can promote the etching process. The etching rate and uniformity increase with the ratio of CF4/O2. Further, the optimum indexs achieve at CF4/O2=15/8. Compared with the source power, the bias power plays a leading role in increasing the etch rate, while the uniformity is controlled within 15%. The etching rate improves with the decrease of the pressure, within the limit of 4 Pa. Based on this, the etching processes of the composite structure SiNx/SiO2, SiO2/SiNx, SiNx/SiO2/SiNx are optimized. Ultimately, the well-formed, residue-free via-holes are obtained and the bad issue occurred in the via-hole is completely improved, which provide theoretical guidance for favorable electrical contact with the oxide TFT devices.
参考文献

[1] 王妹.非晶IGZO薄膜晶体管背沟道表面修饰及器件特性研究[D].宁波: 中国科学院宁波材料技术与工程研究所, 2016.

    WANG M. Back-channel surface decoration in a-IGZO TFTs and the investigations on the device characteristics [D]. Ningbo: Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 2016. (in Chinese)

[2] 斯蒂芬·A·坎贝尔.微电子制造科学原理与工程技术[M].2版.曾莹, 译.北京: 电子工业出版社, 2003.

    CAMPBELL S A. The Science and Engineering of Microelectronic Fabrication [M]. 2nd ed. ZENG B, trans. Beijing: Publishing House of Electronics Industry, 2003. (in Chinese)

[3] 杜文涛, 曾志刚, 胡志宇.氧化硅RIE刻蚀工艺研究[J].半导体光电, 2014, 35(1): 57-60.

    DUW T, ZENG Z G, HU Z Y. Study on Reactive Ion Etching of SiO2 [J]. Semiconductor Optoelectronics, 2014, 35(1): 57-60. (in Chinese)

[4] 张锦, 冯伯儒, 杜春雷, 等.反应离子刻蚀工艺因素研究[J].光电工程, 1997, 24(S1): 47-52.

    ZHANG J, FENG B R, DU C L, et al. Research on the technological factors for the reactive ion etching [J]. Opto-Electronic Engineering, 1997, 24(S1): 47-52. (in Chinese)

[5] 曲鹏程, 唐代飞, 向鹏飞, 等.氮化硅等离子体刻蚀工艺研究[J].电子科技, 2017, 30(8): 153-155.

    QU P C, TANG D F, XIANG P F, et al. Study on plasma etching process of silicon nitride [J]. Electronic Science and Technology, 2017, 30(8): 153-155. (in Chinese)

[6] 胡俊鹏, 张贵生, 周春来.采用CF4-H2等离子体干法刻蚀SiO2[J].微细加工技术, 1985(2): 33-36.

    HU J P, ZHANG G S, ZHOU C L. Dry etch using CF4-H2 plasma, SiO2[J]. Microfabrication Technology, 1985(2): 33-36. (in Chinese)

田茂坤, 董晓楠, 黄中浩, 王骏, 王思江, 赵永亮, 闵泰烨, 袁剑峰, 孙耒来, 谌伟, 王恺, 吴旭. IGZO-TFT钝化层三元复合结构过孔刻蚀[J]. 液晶与显示, 2019, 34(6): 564. TIAN Mao-kun, DONG Xiao-nan, HUANG Zhong-hao, WANG Jun, WANG Si-jiang, ZHAO Yong-liang, MIN Tai-ye, YUAN Jian-feng, SUN Lei-lai, CHEN Wei, WANG Kai, WU Xu. Ternary composites of passivation layer for hole plasma etching of IGZO-TFT[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(6): 564.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!