刘丹 1,2刘毅 1,3黄中浩 1吴青友 1[ ... ]方亮 2
作者单位
摘要
1 重庆京东方光电科技有限公司, 重庆 400700
2 重庆大学 物理学院, 重庆 400044
3 中国科学院大学 重庆学院, 重庆 400714
ITO刻蚀产线由刻蚀设备、中央药液供给系统(Chemical central Supply System, CCSS)、刻蚀液管理系统(Etchant Management System, EMS)3大组件构成。明确组件之间的相互作用, 确认相互作用对刻蚀液浓度的影响, 进而管控刻蚀, 对ITO刻蚀制程至关重要。本文结合重庆京东方ITO刻蚀产线, 探究不同生产模式下刻蚀液各组分浓度的变化, 结合回归分析、因果链和统计方法分析了各成分浓度变化的原因, 并确认刻蚀液浓度变化对刻蚀程度的影响。实验结果表明: 仅CCSS开启, 刻蚀液中酸液浓度增加, 致其刻蚀能力逐渐增强。在CCSS开启的基础上, EMS开启补充水和硝酸功能, 可以保持刻蚀液浓度稳定, 进而延长刻蚀液的使用时间。但是, 在CCSS和EMS补给均开启的模式下, 刻蚀液浓度在初期波动, 然后逐步趋于稳定, 且在浓度波动期间会有一个硝酸浓度偏高的区域, 此区域的刻蚀能力强。该研究为ITO刻蚀液使用时间延长、产品良率提升提供了参考。
薄膜晶体管 湿法刻蚀 ITO刻蚀液 浓度变化 ITO电极 thin film transistor wet etch ITO etchant concentration change ITO electrode 
液晶与显示
2021, 36(4): 549
刘丹 1,2刘毅 1,3黄中浩 1高坤坤 1[ ... ]方亮 2
作者单位
摘要
1 重庆京东方光电科技有限公司,重庆 400700
2 重庆大学 物理学院,重庆 400044
3 中国科学院 重庆绿色智能技术研究院,重庆 400714
薄膜晶体管(Thin film transistor,TFT)的栅极在截面方向上是一个台阶,栅极绝缘层(Gate Insulator,GI)和源漏极(Source和Data电极,SD电极)依次覆盖于台阶之上,覆盖程度以台阶覆盖率(台阶处GI层水平厚度与竖直厚度的比值)进行衡量。本文结合重庆京东方的HADS产品工艺制程,探究了栅极厚度、坡度角对GI层的台阶覆盖率的影响。同时,在覆盖率的基础上研究了台阶处和非台阶处的SD膜层刻蚀程度差异。结合量产中的不良,分析栅极坡度角、覆盖率、栅极腐蚀等相关不良的关系,并提出相应的良率提升措施。实验结果表明:坡度角是影响GI覆盖率的关键因素,且栅极坡度角与GI覆盖率呈负线性关系。当栅极厚度在280~500 nm范围变化时,栅极坡度角每增加10°,GI层台阶覆盖率下降约20%。SD膜层覆盖在台阶上,因台阶的存在造成此处的SD层减薄,最终导致该处的SD膜层刻蚀程度加大。如果栅极坡度角偏大,会导致台阶处GI层减薄或者产生微裂纹,工艺制程中的腐蚀介质会透过减薄的GI层进而腐蚀栅极;此外,偏大的栅极坡度角会导致台阶处的SD电极有断线的风险。通过刻蚀液种类变更、刻蚀液成分微调、刻蚀工艺的优化可以降低栅极坡度角,规避上述良率风险。此外,对于栅极腐蚀型不良,也可以通过调整GI层的成膜参数来提升覆盖率。对于SD电极断线风险,可尝试增加光刻胶粘附力、台阶处SD线加宽等措施规避风险。
薄膜晶体管 栅极坡度角 台阶覆盖率 信号线断线 栅极腐蚀 thin film transistor gate profile step coverage data line open gate corrosion 
液晶与显示
2020, 35(10): 1026
作者单位
摘要
重庆京东方光电科技有限公司, 重庆400700
本文通过电学特性测试设备在黑暗(Dark)和光照(Photo)两种测试环境下, 研究了沟道不同a-Si剩余厚度对TFT电学特性的影响。通过调整刻蚀时间改变沟道内a-Si 剩余厚度, 找出电学特性稳定区域以及突变的临界点。实验结果表明: 在黑暗(Dark)环境下a-Si 剩余厚度在30%~48%之间时, TFT器件的电学特性比较稳定, 波动较小; 而剩余厚度少于30%时, TFT特性变差, 工作电流变小, 开启电压变大, 电子迁移率变小; 在光照环境下主要考虑漏电流的影响, 在a-Si剩余厚度43%以内时, 光照 Ioff相对较低(小于Spec 20 pA), 同时变化趋势较缓; 而剩余厚度大于43%时, 光照Ioff增加25%, 同时变化趋势陡峭。综合黑暗和光照测试环境, 在其他条件不变的情况下, a-Si 剩余厚度在30%~43%之间时TFT的电学特性较好, 同时相对稳定。
a-Si剩余量 电学特性 工作电流 漏电流 a-Si remain electrical characteristics Ion Ioff 
液晶与显示
2019, 34(7): 646
作者单位
摘要
重庆京东方光电科技有限公司, 重庆400700
IGZO-TFT钝化层设计三元复合过孔结构, 出现了20%过孔相关不良。本文以CF4/O2为反应气体, 采用控制变量法, 从功率、气体成分和比例、压力等方面对氧化物TFT钝化层的电感耦合等离子体刻蚀机理进行研究。当钝化层为SiO2或SiNx单组分时, 氧气可以促进刻蚀反应; 随着CF4/O2比例增加, 刻蚀速率先增大后趋于稳定, 并且当CF4/O2=15/8时, 刻蚀速率和均一性达到最优; 与源功率相比, 提高偏压功率在提升刻蚀速率中起主导作用, 同时均一性控制在15%以内; 当压力在4 Pa以内时, 刻蚀速率随着压力的降低而增加。据此分析, 对复合结构SiNx/SiO2、SiO2/SiNx、SiNx/SiO2 /SiNx的刻蚀过程进行优化, 得到了形貌规整、无残留物的过孔, 过孔相关不良得到100%改善。
氧化物TFT 三元复合结构 钝化层 过孔刻蚀 IGZO-TFT ternary composites passivation hole etching 
液晶与显示
2019, 34(6): 564

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!