中国光学, 2017, 10 (6): 744, 网络出版: 2017-12-25   

双波段芯片集成封装组件的低温光谱定量化

Low temperature spectroscopy quantification of integrated dual band chip package
作者单位
1 中国科学院 上海技术物理研究所 传感技术联合国家重点实验室, 上海 200083
2 中国科学院 上海技术物理研究所 中国科学院红外成像材料与器件重点实验室, 上海 200083
3 中国科学院大学, 北京 100049
摘要
在同一组件中多芯片多波段的应用中, 由于芯片的中心距越来越小, 导致某些相邻波段通常被集成制备到一个芯片上。为减小波段串扰, 本文针对一体化双波段芯片集成封装组件的低温光谱定量化展开研究, 通过制备一体化双波段芯片集成封装组件, 并通过波段间物理隔离、金属区物理遮盖等措施将两波段的光束隔离。测试结果表明隔离前后, 芯片间光谱串光现象有了明显改善, 波段间串扰从8%降到了4%以内, 光谱带外响应从65%降低至078%。为了避免低温工况下物理隔离条与芯片的热失配问题, 隔离条采用与芯片衬底完全一致材料。双波段芯片集成封装组件的高低温冲击试验表明, 其在有效抑制组件内串扰的同时, 也解决了组件内关键部件的热失配问题。
Abstract
As the chip center distance becomes smaller and smaller, some adjacent bands are usually integrated and prepared on a single chip in multi-chip and multi-band applications of the same component. Therefore, the crosstalk between the chips and the reflection of the chip metal film area will have some impact on the spectral characteristics. In order to reduce the influence of band crosstalk, this paper studies the low-temperature quantificational spectrum control of integrated dual-band chip package. By preparing integrated dual-band chip package, two-band beam isolation is achieved through physical isolation between wavebands and physical cover of the metal areas. The test results show that the spectral crosstalk between chips has been significantly improved after isolation. The crosstalk between bands has been reduced from 8% to 4%, and the out-of-band response has been reduced from 65% to 078%. In order to avoid the problem of thermal mismatch between the physical isolation strip and the chip under the condition of low temperature, the isolation strip adopts the material which is completely consistent with that of the chip substrate. High-low temperature impact test of dual-band chip package shows that the thermal mismatch of the key components in the package can be solved while effectively suppressing the crosstalk in the package.
参考文献

[1] LINDSEY D T,SCHMIT T J,MACKENZIE W M,et al.. 10.35 μm:an atmospheric window on the GOES-R advanced baseline imager with less moisture attenuation[J]. Applied Remote Sensing,2012(6):063598-1-063598-12.

[2] HILLGER D W,SCHMIT T J. The GOES-14 science test:imager and sounder radiance and product validations[R]. NOAA Technical Report NESDIS,2010,8.

[3] PUSCHELL J J,LOWE H A,JETER J,et al.. Japanese Advanced Meteorological Imager(JAMI):design, characterization and expected on-orbit performance[J]. International TOVS Study Conference-XIII Proceeding,2003,10:617-633.

[4] 王云姬.集成滤光微结构的InGaAs短波红外探测器[D].上海:上海技术物理所, 2014.

    WANG Y J. Study on planar InGaAs short wavelength infrared detector integrated with filter film[D]. Shanghai:Shanghai Institute of Technical Physics,Chinese Academy of Sciences,2014.(in Chinese)

[5] 蔡渊, 周晟, 刘定权.基于组合Fabry-Perot膜系的中波红外双色滤光片设计[J].光学学报,2016,36(2):195-202.

    CAI Y,ZHOU SH,LIU D Q. Design of dual-band-pass optical filter based on combination of fabry-perot coatings in mid-infrared band[J]. Acta Optica Sinica,2016,36(2):195-202.(in Chinese)

[6] DRUART G,GU′ERINEAU N,HIDAR R,et al.. MULTICAM:a miniature cryogenic camera for infrared detection[J]. SPIE,2008,6992:69920G-10.

[7] 夏王, 王小坤, 林春,等.12.5 μm长线列碲镉汞焦平面杜瓦组件[J].激光与红外,2012,42(4):389-392.

    XIA W,WANG X K,LIN CH,et al.. Dewar for 12.5 μm long linear HgCdTe IRFPA[J]. Laser & Infrared,2012,42(4):389-392.(in Chinese)

[8] 郭帮辉,孙强,王志,等.300~1100 nm多波段成像光学系统设计及杂光分析[J].中国光学与应用光学, 2010,10(3):474-479.

    GUO B H,SUN Q,WANG ZH,et al.. Design of 300- 1100 nm multiband optical imaging system and its stray light analysis[J]. Chinese J. Optics and Applied Optics,2010,10(3):474-479.(in Chinese)

[9] 李新耀.风云二号扫描辐射计杂散光分析与抑制[D].上海:上海技术物理所, 2006.

    LI X Y. Analyzing and suppressing visible stray light of scanning radiometer for FY-2 meteorological satellite[D]. Shanghai:Shanghai Institute of Technical Physics, Chinese Academy of Sciences,2006.(in Chinese)

[10] 汪洋.红外探测器组件杂散光分析及抑制研究[D].上海:上海技术物理所, 2016.

    WANG Y. Study on suppression and analysis of stray light in infrared detector assembly[D]. Shanghai:Shanghai Institute of Technical Physics, Chinese Academy of Sciences,2016.(in Chinese)

[11] 金宁, 杨开宇, 曹凌,等.红外系统冷屏形状的优化设计[J].光学学报,2016,36(1):104-111.

    JIN N,YANG K Y,CAO L,et al.. Optimization design for the shapes of cold shield in infrared systems[J]. Acta Optica Sinica,2016 ,36(1):104-111.(in Chinese)

[12] 尹爽, 朱颖峰, 黄一彬,等.红外焦平面杜瓦冷屏挡光环杂散辐射的抑制[J].红外技术,2015,37(11):916-920.

    YIN SH, ZHU Y F, HUANG Y B,et al.. The stray radiation suppression of the baffles of infrared focal plane dewar[J]. Infrared Technology,2015,37(11):916-920.(in Chinese)

[13] 卜和阳, 卢振武, 张红鑫,等.内掩式透射地基日冕仪中杂光鬼像的消除[J].中国光学,2013,6(2):231-236.

    BU H Y, LU ZH W, ZHANG H X, et al.. Suppresion of stray light ghost image in internally occulting refractive ground-based coronagraph[J]. Chinese Optics,2013,6(2):231-236.(in Chinese)

[14] 李萍, 卢振武, 夏利东,等.反射式内掩日冕仪的光学设计与杂散光分析[J].中国光学与应用光学,2009,2(5):408-413.

    LI P, LU ZH W, XIA L D,et al.. Stray light analysis of internally occulted mirror coronagraph[J]. Chinese J. Optics and Applied Optics,2009,2(5):408-413.(in Chinese)

[15] 李言谨, 何力, 杨建荣,等.碲镉汞红外焦平面器件热失配应力研究[J].红外与毫米波学报, 2008,27(6): 409-412.

    LI Y J, HE L, YANG J R, et al.. Study on thermal mismatch stress of HgCdTe infrared focal plane array[J]. Infrared Millim. Waves,2008,27(6): 409-412.(in Chinese)

徐勤飞, 刘大福, 龚海梅, 吴家荣, 蒋梦蝶, 张亚妮, 季鹏, 王仍, 张麟. 双波段芯片集成封装组件的低温光谱定量化[J]. 中国光学, 2017, 10(6): 744. XU Qin-fei, LIU Da-fu, GONG Hai-mei, WU Jia-rong, JIANG Meng-die, ZHANG Ya-ni, JI Peng, WANG Reng, ZHANG Lin. Low temperature spectroscopy quantification of integrated dual band chip package[J]. Chinese Optics, 2017, 10(6): 744.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!