半导体光电, 2020, 41 (1): 80, 网络出版: 2020-04-13  

温度和材料参数对InAsxSb1-x俄歇复合寿命影响的数值分析

Studying Influence of Temperature and Material Parameters on InAsxSb1-x Auger Recombination Life by Numerical Analysis
作者单位
1 长春理工大学 光电信息学院, 长春 130114
2 吉林大学 电子科学与工程学院 集成光电子学国家重点实验室, 长春 130012
摘要
工作在中长波的红外探测器可被广泛应用在空间成像、**和通信等领域, 锑基InAsSb材料由于其特殊的性质是制作长波非致冷光子探测器的理想材料。俄歇复合寿命是影响探测器性能的重要因素之一, 文章采用Matlab软件模拟研究了n型和p型InAsxSb1-x材料的俄歇复合寿命随温度、As组分及载流子浓度的变化。对确定的As组分, 可通过优化工作温度及载流子浓度获得较长的俄歇复合寿命。当载流子浓度为3.2×1015cm-3、温度为200K时, n型InAs0.35Sb0.65的俄歇复合寿命最大为2.91×10-9s。
Abstract
Infrared detectors working in the medium and long wavelength can be widely used in the fields of space imaging, military, communication and so on. Antimony-based InAsSb materials are ideal materials for fabricating long-wave uncooled photon detectors due to their special properties. Auger recombination lifetime is one of the important factors affecting the performance of detectors . In this paper, Auger recombination lifetime of n and p type InAsxSb1-x materials changing with temperature, As composition and carrier concentration is studied by Matlab software. For the determined As component, the longer Auger composite life can be obtained by optimizing working temperature and carrier concentration. When the carrier concentration is 3.2×1015cm-3 and the temperature is 200K, the maximum Auger lifetime of n-type InAs0.35Sb0.65 is 2.91×10-9s.
参考文献

[1] Schlessinger M. Infrared Technology Fundamentals[M]. New York: Marcel Dekker, Inc., 1995.

[2] 高玉竹, 龚秀英, 李继军, 等. 非制冷型InAsSb光探测器在8~9μm波长的性能提高[J]. 光电子·激光, 2015, 26(5): 825-828.

    Gao Yuzhu, Gong Xiuying, Li Jijun, et al. Performance enhancement of uncooled InAsSb photodetectors at wavelength of 8~9μm[J]. J. of Optoelectronics·Laser, 2015, 26(5): 825-828.

[3] 孙常鸿, 胡淑红, 王奇伟, 等. 非致冷InAsSb中长波红外探测器研究评述[J]. 中国电子科学研究院学报, 2010, 5(1): 11-18.

    Sun Changhong, Hu Shuhong, Wang Qiwei, et al. The research on uncooled InAsSb MWIR and LWIR detectors[J]. J. of China Academy of Electronics and Information Technol., 2010, 5(1): 11-18.

[4] Kopytko M, Martyniuk P, Madejczyk P, et al. High frequency response of LWIR HgCdTe photodiodes operated under zero-bias mode[J]. Optical and Quantum Electron., 2018, 50(2): 64.

[5] 郭 轶, 吴广会, 冯彦斌. 光导型InAsSb红外探测器的研制[J]. 电子设计工程, 2012, 20(18): 93-95.

    Guo Yi, Wu Guanghui, Feng Yanbin. Fabrication of photoconductors InAsSb infrared detector[J]. Electronic Design Engin., 2012, 20(18): 93-95.

[6] Rogalski A. InAs1-xSbx infrared detectors[J]. Prog. Quant. Electr., 1989, 13(3): 191-231.

[7] Razeghi M. Overview of antimonide based Ⅲ-Ⅴ semiconductor epitaxial layers and their applications at the center for quantum devices[J]. Eur. Phys. J. of Appl. Phys., 2003, 23(3): 149-205.

[8] Suo F, Tong J C, Qian L, et al. Study of dark current in mid-infrared InAsSb-based hetero n-i-p photodiode[J]. J. of Physics D: Appl. Phys., 2018, 51: 275102.

[9] 高玉竹, 赵子瑞, 龚秀英. 近室温工作的中长波InAsSb探测器[J]. 光电子·激光, 2018, 29(12): 1266-1269.

    Gao Yuzhu, Zhao Zirui, Gong Xiuying. InAsSb photodetectors with long wavelength operating at near room temperature[J]. J. of Optoelectronics·Laser, 2018, 29(12): 1266-1269.

[10] 邓功荣, 赵 鹏, 袁 俊, 等. 锑基高工作温度红外探测器研究进展[J]. 红外技术, 2017, 39(9): 780-784.

    Deng Gongrong, Zhao Peng, Yuan Jun, et al. Status of Sb-based HOT infrared detectors[J]. Infrared Technol., 2017, 39(9): 780-784.

[11] Wieder H H, Clawson A R. Photo-electronic properties of InAs0.07Sb0.93 films[J]. Thin Solid Films, 1973, 15(2): 217-221.

[12] Bethea C G, Levine B F, Yen M Y. Photoconductance measurements on InAs0.22Sb0.78/GaAs grown using molecular beam epitaxy[J]. Appl. Phys. Lett., 1988, 53(4): 291-292.

[13] Rogalski A, Jozwikowski K. Intrinsic carrier concentration and effective masses in InAs1-xSbx[J]. Infrared Phys., 1989, 29(1): 35-42.

[14] Beattie A. Quantum efficiency in InSb[J]. J. Phys. Chem. Solids., 1962, 23(8): 1049-1056.

张景波, 张云琦, 王思文, 孙晓冰, 邢春香, 刘强, 殷景志. 温度和材料参数对InAsxSb1-x俄歇复合寿命影响的数值分析[J]. 半导体光电, 2020, 41(1): 80. ZHANG Jingbo, ZHANG Yunqi, WANG Siwen, SUN Xiaobing, XING Chunxiang, LIU Qiang, YIN Jingzhi. Studying Influence of Temperature and Material Parameters on InAsxSb1-x Auger Recombination Life by Numerical Analysis[J]. Semiconductor Optoelectronics, 2020, 41(1): 80.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!