半导体光电, 2016, 37 (3): 353, 网络出版: 2016-09-14  

氯基条件下4H-SiC衬底的同质外延生长研究

Study on Chloride-based Homoepitaxial Growth on 4° Off-axis (0001) 4H-SiC Substrate
作者单位
1 中国科学院半导体研究所 半导体材料科学重点实验室, 北京100083
2 国网智能电网研究院, 北京 100192
3 东莞天域半导体科技有限公司, 广东 东莞 523000
摘要
利用课题组自主研发的热壁低压化学气相沉积(HWLPCVD)系统, 在朝[11-20]方向偏转4°的(0001)Si面4H-SiC衬底上进行快速同质外延生长, 研究了生长温度及氯硅比(Cl/Si比)对外延生长速率的影响机理。研究发现, 外延生长速率随生长温度的提高呈线性增加, 而Cl/Si比的改变对生长速率的影响不大。文章进一步探究了Cl/Si比对4H-SiC外延层表面缺陷的影响。较低的Cl/Si比(0.4~2)可以减少或消除三角缺陷, Cl/Si比较高(大于5)时, 表面质量反而下降, 因而, 适当的Cl/Si比对于获得表面形貌良好的4H-SiC外延层至关重要。
Abstract
4H-SiC epilayers were grown on 4°off-axis Si face 4H-SiC substrates by a novel home-made horizontal hot wall low pressure chemical vapour deposition (HWLPCVD) system. In this paper, the effects of growth temperature and Cl/Si ratio on the growth rate of the epilayers were investigated. It is found that the growth rate increases linearly with the increase of growth temperature, while the growth rate is not dependent on Cl/Si ratio. The related mechanism of the temperature and Cl/Si ratio on the growth rate was investigated. The lower Cl/Si ratio (0.4~2) can reduce or eliminate the triangular defect, however, the surface quality deteriorates with much higher Cl/Si ratio(>5), thus, appropriate Cl/Si ratio is essential to obtain 4H-SiC epilayers with good morphology surface.
参考文献

[1] 张波,邓小川, 张有润, 等. 宽禁带半导体SiC功率器件发展现状及展望[J]. 中国电子科学研究院学报, 2009, 4(2): 111-118.

    Zhang Bo,Deng Xiaochuan, Zhang Yourun, et al. Recent development and future perspective of silicon carbide power devices-opportunity and challenge[J]. J. China Academy of Electron. and Information Technol., 2009, 4(2): 111-118.

[2] 钱照明,张军明, 盛况. 电力电子器件及其应用的现状和发展[J]. 中国电机工程学报,2014,34(29): 5149-5161.

    Qian Zhaoming,Zhang Junming , Sheng Kuang. Status and development of power semiconductor devices and its applications[J].Proc. the CSEE,2014,34(29): 5149-5161.

[3] 宋庆文.4H-SiC高压肖特基二极管及结终端技术研究[D]. 西安: 电子科技大学, 2010.

    Song Qingwen.Study on 4H-SiC high pressure Schottly diode and terminal technology[D]. Xian: Xidian University, 2010.

[4] Yan G G,Sun G S, Wu H L, et al. Multi-wafer 3C-SiC thin films grown on Si(100) in a vertical HWLPCVD reactor[J]. J. Semiconductors, 2011, 32: 063001-063051.

[5] 贾仁需.4H-SiC同质外延的表征及深能级分析研究[D]. 西安: 西安电子科技大学, 2008.

    Jia Renxu.Characterization and deep level analysis on 4H-SiC homoepitaxy[D]. Xian: Xidian University, 2008.

[6] 吴康迪.即将普及的碳化硅器件[J]. 电子产品世界, 2009, 16(10): 5-6.

    Wu Kangdi.SiC device will be popular[J]. Engin. & Product World, 2009, 16(10): 5-6.

[7] Wu H L,Sun G S, Yang T, et al. High-quality homoepitaxial layers grown on 4H-SiC at high growth rate by vertical LPCVD[J]. J. Semiconductors, 2011, 32: 043005.

[8] Henry A,Leone S, Beyer F C, et al. SiC epitaxy growth using chloride-based CVD[J]. Phy. B Condensed Matter., 2012, 407(10): 1467-1471.

[9] Waldrop J R,Grant R W, Wang Y C, et al. Metal Schottky barrier contacts to alpha 6H-SiC[J]. J. Appl. Phys., 1992, 72(10): 4757-4760.

[10] 陈光华,邓金祥. 新型电子薄膜材料[M]. 北京: 化学工业出版社, 2002.

    Chen Guanghua,Deng Jinxiang. Novel Electronic Film Matrerial[M]. Beijing: Chem. Industry Press,2002.

[11] 闫果果,孙国胜, 吴海雷, 等. 4H-SiC同质外延层中的扩展缺陷研究[J]. 半导体光电, 2011, 32(3): 359-362.

    Yan Guoguo,Sun Guosheng, Wu Hailei, et al. Study on extended defects in 4H-SiC epitaxial layers[J].Semiconductor Optoelectronics,2011,32(3): 359-362.

[12] 孙哲,吕红亮, 王悦湖, 等. 零偏4H-SiC衬底的同质外延方法[J]. 微纳电子技术, 2014(1): 48-52.

    Sun Zhe,Lv Hongliang, Wang Yuehu, et al. Homoepitaxy methods of zero offset 4H-SiC substrate[J]. Micronanoelectron. Technol., 2014(1): 48-52.

[13] Leone S,Henry A, Janzen E, et al. Epitaxial growth of SiC with chlorinated precursors on different off-angle substrates[J]. J. Crystal Growth, 2013, 362: 170-173.

[14] Thierry-Jebali N,Hassan J, Lazar M, et al. Observation of the generation of stacking faults and active degradation measurements on off-axis and on-axis 4H-SiC PiN diodes[J]. Appl. Phys. Lett., 2012, 125(1/2): 161-181.

[15] Ellison A,Radamson H, Tuominen M, et al. Wafer warpage, crystal bending and interface properties of 4H-SiC epi-wafers[J]. Diam Relat Mater., 1997, 6(10): 1369-1373.

[16] Fujihira K,Kimoto T, Matsunami H. Growth and characterization of 4H-SiC in vertical hot-wall chemical vapor deposition[J]. J. Crystal Growth, 2003, 255: 136-144.

[17] Pedersen H,Leone S, Henry A, et al. Very high growth rate of 4H-SiC epilayers using the chlorinated precursor methyltrichlorosilane (MTS)[J]. J. Crystal Growth, 2007, 307(2): 334-340.

[18] Crippa D,Valente G L, Ruggiero A, et al. New achievements on CVD based methods for SiC epitaxial growth[J]. Mater. Science Forum, 2005, 483/485(483): 67-72.

闫果果, 张峰, 钮应喜, 杨霏, 刘兴昉, 王雷, 赵万顺, 孙国胜, 曾一平. 氯基条件下4H-SiC衬底的同质外延生长研究[J]. 半导体光电, 2016, 37(3): 353. YAN Guoguo, ZHANG Feng, NIU Yingxi, YANG Fei, LIU Xingfang, WANG Lei, ZHAO Wanshun, SUN Guosheng, ZENG Yiping. Study on Chloride-based Homoepitaxial Growth on 4° Off-axis (0001) 4H-SiC Substrate[J]. Semiconductor Optoelectronics, 2016, 37(3): 353.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!