液晶与显示, 2019, 34 (8): 755, 网络出版: 2019-10-12   

激光化学气相沉积法在TFT-LCD电路缺陷维修中的应用

Application of laser chemical vapor deposition in repairing TFT-LCD circuit defects
作者单位
1 福州京东方光电科技有限公司, 福建 福州 350300
2 北京京东方传感技术有限公司, 北京 100176
摘要
为了维修TFT-LCD电路缺陷, 利用激光化学气相沉积法(LCVD)沉积钨薄膜, 讨论成膜参数对基底损伤、钨薄膜电阻率的影响。在空气氛围下, 波长为351 nm的脉冲激光诱导W(CO)6裂解成膜, 通过聚焦离子束-扫描电子显微镜(FIB-SEM)观察薄膜横截面研究成膜参数对基底损伤的影响, 再用高精度的电参数测试仪(EPM)测试不同参数下钨薄膜电阻。控制变量法表明, 激光功率或激光束光斑尺寸越大, 薄膜基底损伤越大, 但电阻率越小, 且不沉积薄膜时高功率激光辐射也不会造成基底损伤; 激光辐射速度越大, 基底损伤越小, 但电阻率越大。通过平衡工艺参数, 得到了电阻率为0.96 Ω/μm、对基底无损伤的钨薄膜, 成分分析表明此时W(CO)6已经完全裂解。
Abstract
The deposition of tungsten film through laser chemical vapor deposition (LCVD) was investigated for the repair of circuit defects of TFT-LCD panels, simultaneously the film-forming process parameters influencing the damage of thin film transistor substrate, electrical resistance of tungsten film were discussed. Firstly, the pulsed laser irradiation at 351 nm was used to deposit tungsten from W(CO)6 in air atmosphere, and the damage of thin film transistor substrate at diverse film-forming process parameters were observed through focused ion beam-scanning electron microscope (FIB-SEM). Then, the electrical resistances of tungsten films at various film-forming process parameters were tested by high-accuracy Electrical parameter tester (EPM). The control variable method experiments indicate that the larger laser power or bigger size of slit placed in the beam path lead to more serious substrate damage but lower electrical resistivity, and high-power laser radiation without tungsten film deposition cant cause substrate damage; greater laser scan speed result in less substrate damage but higher resistivity by maintaining other effect factors constant. The lower resistivity (0.96 Ω/μm) and good surface morphology tungsten film is obtained without damage of the thin film transistor substrate at balanced condition, and component analysis shows that W(CO)6 are complete decomposed.
参考文献

[1] 刘莎, 王丹, 杨照坤, 等.TFT-LCD技术发展趋势浅析[J].液晶与显示, 2018, 33(6): 457-463.

    LIU S, WANG D, YANG Z K,et al. Key technology trends analysis of TFT-LCD [J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(6): 457-463. (in Chinese)

[2] 刘丽, 韦建军, 吴卫东, 等.激光诱导化学气相沉积(LCVD)制膜技术[C]//2011中国功能材料科技与产业高层论坛论文集(第三卷).重庆: 重庆大学, 2011.

    LIU L, WEI J J, WU W D, et al. Technology of thin films by LCVD [C]//Proceedings of 2011 China Functional Materials Technology and Industry Forum (Volume Ⅲ). Chongqing: Chongqing University, 2011. (in Chinese)

[3] 宋登元.光诱导化学汽相淀积(LCVD)技术的研究进展[J].半导体技术, 1989(2): 1-6.

    SONG D Y. Research progress of laser chemical deposition (LCVD) technology [J].Semiconductor Technology, 1989(2): 1-6. (in Chinese)

[4] 强游.激光化学气相沉积[J].真空与低温, 1987(1): 44-49.

    QIANG Y. Laser chemical deposition (LCVD) [J].Vacuum and Cryogenics, 1987(1): 44-49. (in Chinese)

[5] JACKSON R L, TYNDALL G W. Kinetics and mechanism of laser-induced photochemical deposition from the group 6 hexacarbonyls [J]. Journal of Applied Physics, 1988, 64(4): 2092-2102.

[6] LUNDQUIST R T, CAIS M. Ultraviolet spectra of organometallic compounds [J].The Journal of Organic Chemistry, 1962, 27(4): 1167-1172.

[7] KAPLAN L H, D’HEURLE F M. The deposition of molybdenum and tungsten films from vapor decomposition of carbonyls [J].Journal of the Electrochemical Society, 1970, 117(5): 693-700.

[8] NAMBU Y, MORISHIGE Y, KISHIDA S. High-speed laser direct writing of tungsten conductors from W(CO)6 [J]. Applied Physics Letters, 1990, 56(25): 2581-2583.

[9] 彭英才, 王英民, 李星文.激光用于半导体工艺的研究进展[J].稀有金属, 1988, 12(2): 136-145.

    PENG Y C, WANG Y M, LI X W. Research progress of laser used in semiconductor process [J].Chinese Journal of Rare Metals, 1988, 12(2): 136-145. (in Chinese)

[10] JEONG K, LEE J, BYUN I,et al. Synthesis of highly conductive cobalt thin films by LCVD at atmospheric pressure [J]. Materials Science in Semiconductor Processing, 2017, 68: 245-251.

[11] 黄河, 朱晓, 朱长虹, 等.激光化学气相沉积技术在掩模版修复中的应用[J].激光技术, 2007, 31(3): 330-332.

    HUANG H, ZHU X, ZHU C H,et al. Laser chemical vapor deposition used in photomask repair [J]. Laser Technology, 2007, 31(3): 330-332. (in Chinese)

[12] PARK J B, KIM C J, SHIN P E,et al. Hybrid LCVD of micro-metallic lines for TFT-LCD circuit repair [J]. Applied Surface Science, 2006, 253(2): 1029-1035.

[13] JEONG K, LEE J, BYUN I,et al. Pulsed laser chemical vapor deposition of a mixture of W, WO2, and WO3 from W(CO)6 at atmospheric pressure [J]. Thin Solid Films, 2017, 626: 145-153.

张伟, 陈小英, 马永生, 付婉霞, 王磊, 周贺, 徐智俊, 王博, 阮毅松. 激光化学气相沉积法在TFT-LCD电路缺陷维修中的应用[J]. 液晶与显示, 2019, 34(8): 755. ZHANG Wei, CHEN Xiao-ying, MA Yong-sheng, FU Wan-xia, WANG Lei, ZHOU He, XU Zhi-jun, Wang Bo, RUAN Yi-song. Application of laser chemical vapor deposition in repairing TFT-LCD circuit defects[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(8): 755.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!