半导体光电, 2017, 38 (1): 61, 网络出版: 2017-03-29  

ICP刻蚀气压对碲镉汞电学性能的影响

Effects of ICP Etching Pressure on Electrical Properties of HgCdTe
作者单位
1 中国科学院上海技术物理研究所 1.传感技术国家重点实验室
2 3. 中国科学院大学, 北京 100039
3 中国科学院上海技术物理研究所 2. 中国科学院红外成像材料与器件重点实验室, 上海 200083
摘要
研究了利用ICP(Inductively Coupled Plasma)干法刻蚀工艺制备长波碲镉汞光导器件过程中刻蚀气体压强对材料电学参数的影响。发现增大气体压强会导致材料的电学性能衰退, 表现为材料的载流子浓度增加、迁移率降低以及电阻率增加。分析认为增大的压强使得材料内部产生了更多的填隙Hg离子, 增强了载流子受到的电离杂质散射作用; 同时材料内部也产生了更多的缺陷, 极化声子散射作用也因此加强。由此解释了在流片过程中出现的某一批次碲镉汞光导器件性能的恶化是该批次器件ICP刻蚀工艺中的气压参数增加所致。
Abstract
The effects of pressure during ICP dry etching on electrical parameters of long wavelength MCT photo-conductive detectors were studied. It is found that increased etching pressure can deteriorate the electric performance, in which the carrier concentration of MCT devices is increased, carrier mobility is decreased and the resistance is increased. It can be explained as more Hg interstitial is induced under higher pressure, carriers experience an enhanced ionization scattering, and also more defects appear due to the enhanced lattice scattering. It is proved that the deterioration of MCT detectors’ performance is caused by higher pressure parameters during ICP etching.
参考文献

[1] 徐鹏霄.HgCdTe表面/界面光电特性研究[D]. 上海: 中国科学院研究生院(上海技术物理研究所), 2014: 1-2.

    Xu Pengxiao.Study on HgCdTe surface/interface optical-electrical characteristics[D]. Shanghai: University of Shanghai: Chinese Academy of Sciences, 2014: 1-2.

[2] Dziuba Z,Górska M. Analysis of the electrical conduction using an iterative method[J]. J. De Physique Ⅲ, 1992, 2(1): 99-110.

[3] Cunningham,Thiess H. Quantitative mobility spectrum analysis of Ⅲ-Ⅴ heterostructures on silicon[D]. Texas State University, 2012.

[4] 褚君浩.窄禁带半导体物理学[M]. 北京: 科学出版社, 2005: 288-291.

    Chu Junhao.Narrow Bandgap Semiconductor Physics[M]. Beijing: Science Press, 2005: 288-291.

[5] Dornhaus R,Nimtz G. The properties and applications of the Hg1-xCdxTe alloy system[J]. Springer Tracts in Modern Physics, 1976, 98(17): 119-300.

[6] 褚君浩.窄禁带半导体物理学[M]. 北京: 科学出版社, 2005: 495.

    Chu Junhao.Narrow Bandgap Semiconductor Physics[M]. Beijing: Science Press, 2005: 495.

[7] 杨建荣.碲镉汞材料物理与技术[M]. 北京: 国防工业出版社, 2012: 88-89.

    Yang Jianrong.HgCdTe Material Physics and Technology[M]. Beijing: National Defence Industry Press, 2012: 88-89.

[8] 唐洁影,汪开源. 合金散射机制与电子迁移率研究[J]. 东南大学学报: 自然科学版, 1995, 25(3): 130-133.

    Tang Jieyin,Wang Kaiyuan. Study on scattering mechanisms and electronmobility of In_(0.53)Ga_(0. 47)As alloy[J]. J. Southeast University: (Natural Science Edition), 1995, 25(3): 130-133.

[9] 褚君浩.窄禁带半导体物理学[M]. 北京: 科学出版社, 2005: 930.

    Chu Junhao.Narrow Bandgap Semiconductor Physics[M]. Beijing: Science Press, 2005: 930.

[10] Carmody M,Edwall D, Ellsworth J, et al. Role of dislocation scattering on the electron mobility of n-type long wave length infrared HgCdTe on silicon[J]. J. of Electronic Materials, 2007, 36(8): 1098-1105.

[11] Carmody M,Edwall D, Ellsworth J, et al. Role of dislocation scattering on the electron mobility of n-type long wave length infrared HgCdTe on silicon[J]. J. of Electronic Materials, 2007, 36(8): 1098-1105.

[12] 萧继荣,林杏朝. 影响碲镉汞晶体电子迁移率的主要因素[J]. 红外技术, 1998(1): 13-14.

    Xiao Jirong,Ling Xingchao. Main factors of influence on electron mobility of HgCdTe crystals[J]. Infrared Technology, 1998, 20(1): 13-14.

操神送, 杜云辰, 朱龙源, 兰添翼, 赵水平, 罗毅, 乔辉. ICP刻蚀气压对碲镉汞电学性能的影响[J]. 半导体光电, 2017, 38(1): 61. CAO Shensong, DU Yunchen, ZHU Longyuan, LAN Tianyi, ZHAO Shuiping, LUO Yi, QIAO Hui. Effects of ICP Etching Pressure on Electrical Properties of HgCdTe[J]. Semiconductor Optoelectronics, 2017, 38(1): 61.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!