激光与光电子学进展, 2019, 56 (6): 060001, 网络出版: 2019-07-30   

AlGaN基深紫外发光二极管空穴注入效率的提高途径 下载: 2247次封面文章

Hole Injection Efficiency Improvement for AlGaN-Based Deep Ultraviolet Light-Emitting Diodes
田康凯 1,2楚春双 1,2毕文刚 1,2张勇辉 1,2,**张紫辉 1,2,*
作者单位
1 河北工业大学电子信息工程学院微纳光电和电磁技术创新研究所, 天津 300401
2 天津市电子材料和器件重点实验室, 天津 300401
引用该论文

田康凯, 楚春双, 毕文刚, 张勇辉, 张紫辉. AlGaN基深紫外发光二极管空穴注入效率的提高途径[J]. 激光与光电子学进展, 2019, 56(6): 060001.

Kangkai Tian, Chunshuang Chu, Wengang Bi, Yonghui Zhang, Zihui Zhang. Hole Injection Efficiency Improvement for AlGaN-Based Deep Ultraviolet Light-Emitting Diodes[J]. Laser & Optoelectronics Progress, 2019, 56(6): 060001.

参考文献

[1] Wang J X, Yan J C, Guo Y N, et al. Recent progress of research on III-nitride deep ultraviolet light-emitting diode[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2015, 45(6): 067303.

[2] Khan A, Balakrishnan K, Katona T. Ultraviolet light-emitting diodes based on group three nitrides[J]. Nature Photonics, 2008, 2(2): 77-84.

[3] Kim K H, Fan Z Y, Khizar M, et al. AlGaN-based ultraviolet light-emitting diodes grown on AlN epilayers[J]. Applied Physics Letters, 2004, 85(20): 4777-4779.

[4] Li L P, Zhang Y H, Xu S, et al. On the hole injection for III-nitride based deep ultraviolet light-emitting diodes[J]. Materials, 2017, 10(10): 1221.

[5] Fujioka A, Asada K, Yamada H, et al. High-output-power 255/280/310 nm deep ultraviolet light-emitting diodes and their lifetime characteristics[J]. Semiconductor Science and Technology, 2014, 29(8): 084005.

[6] Chen Q, Zhang H X, Dai J N, et al. Enhanced the optical power of AlGaN-based deep ultraviolet light-emitting diode by optimizing mesa sidewall angle[J]. IEEE Photonics Journal, 2018, 10(4): 6100807.

[7] Hirayama H, Tsukada Y. MaedaT, et al. Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer[J]. Applied Physics Express, 2010, 3(3): 031002.

[8] Nam K B, Li J, Nakarmi M L, et al. Unique optical properties of AlGaN alloys and related ultraviolet emitters[J]. Applied Physics Letters, 2004, 84(25): 5264-5266.

[9] Zhang J, Zhao H P, Tansu N. Effect of crystal-field split-off hole and heavy-hole bands crossover on gain characteristics of high Al-content AlGaN quantum well lasers[J]. Applied Physics Letters, 2010, 97(11): 111105.

[10] Vurgaftman I, Meyer J R. Band parameters for nitrogen-containing semiconductors[J]. Journal of Applied Physics, 2003, 94(6): 3675-3696.

[11] Lu H M, Yu T J, Yuan G C, et al. Valence subband coupling effect on polarization of spontaneous emissions from Al-rich AlGaN/AlN Quantum Wells[J]. Optics Express, 2012, 20(25): 27384-27392.

[12] Wang W Y, Lu H M, Fu L, et al. Enhancement of optical polarization degree of AlGaN quantum wells by using staggered structure[J]. Optics Express, 2016, 24(16): 18176-18183.

[13] Ryu H Y, Choi I G, Choi H S, et al. Investigation of light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes[J]. Applied Physics Express, 2013, 6(6): 062101.

[14] Long H L, Wu F, Zhang J, et al. Anisotropic optical polarization dependence on internal strain in AlGaN epilayer grown on AlxGa1-xN templates[J]. Journal of Physics D: Applied Physics, 2016, 49(41): 415103.

[15] Long H L, Wang S, Dai J N, et al. Internal strain induced significant enhancement of deep ultraviolet light extraction efficiency for AlGaN multiple quantum wells grown by MOCVD[J]. Optics Express, 2018, 26(2): 680-686.

[16] Fu D, Zhang R, Wang B G, et al. Ultraviolet emission efficiencies of AlxGa1-xN films pseudomorphically grown on AlyGa1-yN template (x. Thin Solid Films, 2011, 519(22): 8013-8017.

[17] Su C Y, Tsai M C, Chou K P, et al. Method for enhancing the favored transverse-electric-polarized emission of an AlGaN deep-ultraviolet quantum well[J]. Optics Express, 2017, 25(22): 26365-26377.

[18] Taniyasu Y, Kasu M. Polarization property of deep-ultraviolet light emission from C-plane AlN/GaN short-period superlattices[J]. Applied Physics Letters, 2011, 99(25): 251112.

[19] Liu C, Ooi Y K, Islam S M, et al. Physics and polarization characteristics of 298 nm AlN-delta-GaN quantum well ultraviolet light-emitting diodes[J]. Applied Physics Letters, 2017, 110(7): 071103.

[20] Northrup J E, Chua C L, Yang Z, et al. Effect of strain and barrier composition on the polarization of light emission from AlGaN/AlN quantum wells[J]. Applied Physics Letters, 2012, 100(2): 021101.

[21] Sharma T K, Naveh D, Towe E. Strain-driven light-polarization switching in deep ultraviolet nitride emitters[J]. Physical Review B, 2011, 84(3): 035305.

[22] Reich C, Guttmann M, Feneberg M, et al. Strongly transverse-electric-polarized emission from deep ultraviolet AlGaN quantum well light emitting diodes[J]. Applied Physics Letters, 2015, 107(14): 142101.

[23] 胡永禄, 刘道柳, 王博, 等. 表面微腔光子晶体LED的光提取特性[J]. 光学学报, 2017, 37(6): 0623004.

    Hu Y L, Liu D L, Wang B, et al. Characteristics of light extraction for surface-microcavity photonic crystal LED[J]. Acta Optica Sinica, 2017, 37(6): 0623004.

[24] 刘顺瑞, 王丽, 孙艳军, 等. 利用截头圆锥形仿生蛾眼结构提高LED光提取效率[J]. 光学学报, 2018, 38(1): 0122001.

    Liu S R, Wang L, Sun Y J, et al. Enhancement of light extraction efficiency of LED by bionic moth-eye structure with frustum of a cone[J]. Acta Optica Sinica, 2018, 38(1): 0122001.

[25] Verzellesi G, Saguatti D, Meneghini M, et al. Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies[J]. Journal of Applied Physics, 2013, 114(7): 071101.

[26] Imura M, Nakano K, Fujimoto N, et al. Dislocations in AlN epilayers grown on sapphire substrate by high-temperature metal-organic vapor phase epitaxy[J]. Japanese Journal of Applied Physics, 2007, 46(4A): 1458-1462.

[27] Follstaedt D M, Lee S R, Provencio P P, et al. Relaxation of compressively-strained AlGaN by inclined threading dislocations[J]. Applied Physics Letters, 2005, 87(12): 121112.

[28] Ren Z, Sun Q, Kwon S Y, et al. Heteroepitaxy of AlGaN on bulk AlN substrates for deep ultraviolet light emitting diodes[J]. Applied Physics Letters, 2007, 91(5): 051116.

[29] Tian K K, Chen Q, Chu C S, et al. Investigations on AlGaN-based deep-ultraviolet light-emitting diodes with Si-doped quantum barriers of different doping concentrations[J]. Physica Status Solidi (RRL) - Rapid Research Letters, 2018, 12(1): 1700346.

[30] Dong P, Yan J C, Wang J X, et al. 282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates[J]. Applied Physics Letters, 2013, 102(24): 241113.

[31] Zhang L S, Xu F J, Wang J M, et al. High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography[J]. Scientific Reports, 2016, 6: 35934.

[32] Zhang X, Xu F J, Wang J M, et al. Epitaxial growth of AlN films on sapphire via a multilayer structure adopting a low- and high-temperature alternation technique[J]. CrystEngComm, 2015, 17(39): 7496-7499.

[33] Imura M, Nakano K, Narita G, et al. Epitaxial lateral overgrowth of AlN on trench-patterned AlN layers[J]. Journal of Crystal Growth, 2007, 298: 257-260.

[34] Mogilatenko A, Küller V, Knauer A, et al. Defect analysis in AlGaN layers on AlN templates obtained by epitaxial lateral overgrowth[J]. Journal of Crystal Growth, 2014, 402: 222-229.

[35] Park J S, Kim J K, Cho J, et al. Review: Group III-nitride-based ultraviolet light-emitting diodes: Ways of increasing external quantum efficiency[J]. ECS Journal of Solid State Science and Technology, 2017, 6(4): Q42-Q52.

[36] Hirayama H, Fujikawa S, Noguchi N, et al. 222-282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire[J]. Physica Status Solidi (a), 2009, 206(6): 1176-1182.

[37] Ryu H Y, Kim H S, Shim J I. Rate equation analysis of efficiency droop in InGaN light-emitting diodes[J]. Applied Physics Letters, 2009, 95(8): 081114.

[38] Piprek J. Efficiency droop in nitride-based light-emitting diodes[J]. Physica Status Solidi (a), 2010, 207(10): 2217-2225.

[39] Zhang Z H, Zhang Y H, Bi W G, et al. On the internal quantum efficiency for InGaN/GaN light-emitting diodes grown on insulating substrates[J]. Physica Status Solidi (a), 2016, 213(12): 3078-3102.

[40] Schubert EF. Light Emitting Diodes[M]. 2nd ed. England: Cambridge University Press, 2006.

[41] Miller D A B, Chemla D S, Damen T C, et al. . Band-edge electroabsorption in quantum well structures: The quantum-confined stark effect[J]. Physical Review Letters, 1984, 53(22): 2173.

[42] Schwarz U T, Braun H, Kojima K, et al. Interplay of built-in potential and piezoelectric field on carrier recombination in green light emitting InGaN quantum wells[J]. Applied Physics Letters, 2007, 91(12): 123503.

[43] Chichibu S F, Yamaguchi H, Zhao L, et al. Improved characteristics and issues of m-plane InGaN films grown on low defect density m-plane freestanding GaN substrates by metalorganic vapor phase epitaxy[J]. Applied Physics Letters, 2008, 93(15): 151908.

[44] Masui H, Nakamura S, Denbaars S P, et al. Nonpolar and semipolar III-nitride light-emitting diodes: Achievements and challenges[J]. IEEE Transactions on Electron Devices, 2010, 57(1): 88-100.

[45] Kim D S, Lee S, Young Kim D, et al. Highly stable blue-emission in semipolar (11-22) InGaN/GaN multi-quantum well light-emitting diode[J]. Applied Physics Letters, 2013, 103(2): 021111.

[46] Chang J Y, Kuo Y K. Influence of polarization-matched AlGaInN barriers in blue InGaN light-emitting diodes[J]. Optics Letters, 2012, 37(9): 1574-1576.

[47] Ryou J H, Limb J, Lee W, et al. Effect of silicon doping in the quantum-well barriers on the electrical and optical properties of visible green light-emitting diodes[J]. IEEE Photonics Technology Letters, 2008, 20(21): 1769-1771.

[48] Fiorentini V, Bernardini F, Della Sala F, et al. Effects of macroscopic polarization in III-V nitride multiple quantum wells[J]. Physical Review B, 1999, 60(12): 8849.

[49] Zhang Z H, Tan S T, Ju Z G, et al. On the effect of step-doped quantum barriers in InGaN/GaN light emitting diodes[J]. Journal of Display Technology, 2013, 9(4): 226-233.

[50] Zhang Z H, Liu W, Ju Z G, et al. Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers[J]. Applied Physics Letters, 2014, 104(24): 243501.

[51] Cho J, Schubert E F, Kim J K. Efficiency droop in light-emitting diodes: Challenges and countermeasures[J]. Laser & Photonics Reviews, 2013, 7(3): 408-421.

[52] Katsuragawa M, Sota S, Komori M, et al. 189-[J]. Mg in AlGaN. Journal of Crystal Growth, 1998, 190: 528-531.

[53] Simon J, Protasenko V, Lian C, et al. Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures[J]. Science, 2010, 327(5961): 60-64.

[54] Schubert E F, Grieshaber W, Goepfert I D. Enhancement of deep acceptor activation in semiconductors by superlattice doping[J]. Applied Physics Letters, 1996, 69(24): 3737-3739.

[55] Kumakura K, Makimoto T, Kobayashi N. Efficient hole generation above 10 19 cm -3 in Mg-doped InGaN/GaN superlattices at room temperature [J]. Japanese Journal of Applied Physics, 2000, 39(3AB): L195-L196.

[56] Jo M, Maeda N, Hirayama H. Enhanced light extraction in 260 nm light-emitting diode with a highly transparent p-AlGaN layer[J]. Applied Physics Express, 2016, 9(1): 012102.

[57] Li L P, Shi Q, Tian K K, et al. A dielectric-constant-controlled tunnel junction for III-nitride light-emitting diodes[J]. Physica Status Solidi (a), 2017, 214(6): 1600937.

[58] Zhang Z H, Li L P, Zhang Y H, et al. On the electric-field reservoir for III-nitride based deep ultraviolet light-emitting diodes[J]. Optics Express, 2017, 25(14): 16550-16559.

[59] Zhang Z H. Huang Chen S W, Zhang Y H, et al. Hole transport manipulation to improve the hole injection for deep ultraviolet light-emitting diodes[J]. ACS Photonics, 2017, 4(7): 1846-1850.

[60] Neugebauer S, Hoffmann M P, Witte H, et al. All metalorganic chemical vapor phase epitaxy of p/n-GaN tunnel junction for blue light emitting diode applications[J]. Applied Physics Letters, 2017, 110(10): 102104.

[61] Jeon S R, Song Y H, Jang H J, et al. Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions[J]. Applied Physics Letters, 2001, 78(21): 3265-3267.

[62] Krishnamoorthy S, Nath D N, Akyol F, et al. Polarization-engineered GaN/InGaN/GaN tunnel diodes[J]. Applied Physics Letters, 2010, 97(20): 203502.

[63] Zhang Z H, Tiam Tan S, Kyaw Z, et al. InGaN/GaN light-emitting diode with a polarization tunnel junction[J]. Applied Physics Letters, 2013, 102(19): 193508.

[64] Krishnamoorthy S, Akyol F, Rajan S. InGaN/GaN tunnel junctions for hole injection in GaN light emitting diodes[J]. Applied Physics Letters, 2014, 105(14): 141104.

[65] Fiorentini V, Bernardini F, Ambacher O. Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures[J]. Applied Physics Letters, 2002, 80(7): 1204-1206.

[66] Li L P, Zhang Y H, Tian K K, et al. Numerical investigations on the n +-GaN/AlGaN/p +-GaN tunnel junction for III-nitride UV light-emitting diodes [J]. Physica Status Solidi (a), 2017, 214(12): 1700624.

[67] Zhang Z H, Tan S T, Liu W, et al. Improved InGaN/GaN light-emitting diodes with a p-GaN/n-GaN/p-GaN/n-GaN/p-GaN current-spreading layer[J]. Optics Express, 2013, 21(4): 4958-4969.

[68] 朱海涛, 傅仁利, 费盟, 等. 铝/氧化铝复合基板封装的LED光源的光热特性[J]. 光学学报, 2017, 37(10): 1023002.

    Zhu H T, Fu R L, Fei M, et al. Optical and thermal performance of LED light source packaged by Al/Al2O3 composite substrate[J]. Acta Optica Sinica, 2017, 37(10): 1023002.

[69] Kuo Y K, Chang J Y, Chen F M, et al. Numerical investigation on the carrier transport characteristics of AlGaN deep-UV light-emitting diodes[J]. IEEE Journal of Quantum Electronics, 2016, 52(4): 3300105.

[70] Zhang Z H, Liu W, Tan S T, et al. A hole accelerator for InGaN/GaN light-emitting diodes[J]. Applied Physics Letters, 2014, 105(15): 153503.

[71] Zhang Z H, Zhang Y H, Bi W G, et al. On the hole accelerator for III-nitride light-emitting diodes[J]. Applied Physics Letters, 2016, 108(15): 151105.

[72] Yun Y Z, Yi A Y. Performance enhancement of blue light-emitting diodes with a special designed AlGaN/GaN superlattice electron-blocking layer[J]. Applied Physics Letters, 2011, 99(22): 221103.

[73] Li Y, Chen S C, Tian W, et al. Advantages of AlGaN-based 310-nm UV light-emitting diodes with al content graded AlGaN electron blocking layers[J]. IEEE Photonics Journal, 2013, 5(4): 8200309.

[74] Zhang Z H. Huang Chen S W, Chu C S, et al. Nearly efficiency-droop-free AlGaN-based ultraviolet light-emitting diodes with a specifically designed superlattice p-type electron blocking layer for high mg doping efficiency[J]. Nanoscale Research Letters, 2018, 13: 122.

[75] Su C Y, Tu C G, Liu W H, et al. Enhancing the hole-injection efficiency of a light-emitting diode by increasing mg doping in the p-AlGaN electron-blocking layer[J]. IEEE Transactions on Electron Devices, 2017, 64(8): 3226-3233.

[76] Zhang Z H, Ju Z G, Liu W, et al. Improving hole injection efficiency by manipulating the hole transport mechanism through p-type electron blocking layer engineering[J]. Optics Letters, 2014, 39(8): 2483-2486.

[77] Chu C S, Tian K K, Fang M Q, et al. Structural design and optimization of deep-ultraviolet light-emitting diodes with AlxGa1-xN/AlyGa1-yN/AlxGa1-xN(x>y) p-electron blocking layer[J]. Journal of Nanophotonics, 2018, 12(4): 043503.

[78] Chu C S, Tian K K, Fang M Q, et al. On the AlxGa1-xN/AlyGa1-yN/AlxGa1-xN(x>y) p-electron blocking layer to improve the hole injection for AlGaN based deep ultraviolet light-emitting diodes[J]. Superlattices and Microstures, 2018, 113: 472-477.

[79] Tian K K, Chu C S, Shao H, et al. On the polarization effect of the p-EBL/p-AlGaN/p-GaN structure for AlGaN-based deep-ultraviolet light-emitting diodes[J]. Superlattices and Microstructures, 2018, 122: 280-285.

[80] Meyaard D S, Lin G B, Ma M, et al. GaInN light-emitting diodes using separate epitaxial growth for the p-type region to attain polarization-inverted electron-blocking layer, reduced electron leakage, and improved hole injection[J]. Applied Physics Letters, 2013, 103: 201112.

[81] Kim S J, Kim T G. Deep-ultraviolet AlGaN light-emitting diodes with variable quantum well and barrier widths[J]. Physica Status Solidi (a), 2014, 211(3): 656-660.

[82] Tsai M C, Yen S H, Kuo Y K. Deep-ultraviolet light-emitting diodes with gradually increased barrier thicknesses from n-layers to p-layers[J]. Applied Physics Letters, 2011, 98(11): 111114.

[83] Zhang Z H, Chu C S, Chiu C H, et al. UVA light-emitting diode grown on Si substrate with enhanced electron and hole injections[J]. Optics Letters, 2017, 42(21): 4533-4536.

田康凯, 楚春双, 毕文刚, 张勇辉, 张紫辉. AlGaN基深紫外发光二极管空穴注入效率的提高途径[J]. 激光与光电子学进展, 2019, 56(6): 060001. Kangkai Tian, Chunshuang Chu, Wengang Bi, Yonghui Zhang, Zihui Zhang. Hole Injection Efficiency Improvement for AlGaN-Based Deep Ultraviolet Light-Emitting Diodes[J]. Laser & Optoelectronics Progress, 2019, 56(6): 060001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!