激光与光电子学进展, 2019, 56 (6): 060001, 网络出版: 2019-07-30   

AlGaN基深紫外发光二极管空穴注入效率的提高途径 下载: 2248次封面文章

Hole Injection Efficiency Improvement for AlGaN-Based Deep Ultraviolet Light-Emitting Diodes
田康凯 1,2楚春双 1,2毕文刚 1,2张勇辉 1,2,**张紫辉 1,2,*
作者单位
1 河北工业大学电子信息工程学院微纳光电和电磁技术创新研究所, 天津 300401
2 天津市电子材料和器件重点实验室, 天津 300401
摘要
国家自然科学基金、河北省自然科学基金、天津市自然科学基金、人社部留学人员科技活动项目择优资助优秀类、河北省计划项目、河北省高校百名优秀创新人才支持计划;
Abstract
Currently, the external quantum efficiency (EQE) for deep ultraviolet light-emitting diodes (DUV LEDs) with emission wavelengths shorter than 360 nm is generally lower than 10%. On one hand, the transverse-magnetic (TM) polarized light dominates the light emission from the AlN-rich AlGaN based quantum wells, which strongly reduces the light-extraction efficiency (LEE) for DUV LEDs. On the other hand, limited by the current hetero-epitaxial growth technologies for AlGaN materials, the crystal quality for DUV LEDs is still poor, which increases the non-radiative recombination rate in the active region, thereby causing the reduction of the internal quantum efficiency (IQE) for DUV LEDs. Besides, the carrier injection efficiency, especially the hole injection efficiency, also strongly influences the IQE for DUV LEDs. Thus, the researchers have made extensive efforts to increase the hole injection efficiency and thus improve the EQE for DUV LEDs. The recently proposed approaches for the improvement of the hole injection efficiency for DUV LEDs are reviewed and discussed. Moreover, the underlying physical mechanisms are disclosed in the in-depth level. These are important for the improvement of the device performances for DUV LEDs.

1 引言

近年来,基于AlGaN材料的深紫外发光二极管(DUV LED),在杀菌消毒、水质净化、医学治疗以及生化探测等诸多领域具有广阔的应用前景[1-3],其发展得到了人们广泛的关注与重视。然而,相较于基于InGaN材料的蓝光发光二极管(blue LED),DUV LED器件的性能不尽人意,外量子效率(EQE)普遍低于10%[4-7],严重制约了DUV LED进一步的普及与应用。

造成DUV LED器件EQE表现不佳的原因有很多。研究结果表明,AlN材料的晶格场劈裂能不同于GaN材料,这种差异使得高AlN组分的AlGaN材料具有独特的价带分布顺序[8-11]。即在布里渊区中心点位置,能量最低的价带为晶格场劈裂带(CH),而不再是重空穴带(HH)。因此,随着AlN组分的增加,基于AlGaN材料的DUV LED的发光将由TE(Transverse Electric)模式偏振光转向TM(Transverse Magnetic)模式偏振光,这在极大程度上降低了表面出光器件的光提取效率(LEE)[12-13]。而且随着AlGaN量子阱中AlN组分的增加,TM偏振光所占的比例增大[8-9],DUV LED的LEE进一步降低。为此,研究人员对衬底、量子垒和量子阱进行选择优化,通过调节量子阱层所受到的压应力来增强TE模式偏振光,从而提高DUV LED器件的LEE[12,14-22]。同时,研究结果表明采用表面微腔光子晶体或设计一种截头圆锥形微结构阵列式钝化层(SiNx)表面,均可以有效地提高LED的LEE[23-24]。其次,内量子效率(IQE)是影响LED器件EQE的另一个重要的因素[25]。一方面,由于AlGaN材料与蓝宝石衬底间存在严重的晶格失配与热膨胀系数失配,因此很难实现AlGaN材料的高质量外延生长,从而造成DUV LED器件的穿透位错密度(TDD)高达109~1010 cm-2量级[19,26-29],极大地增加了有源区内非辐射复合率,严重降低了DUV LED器件的IQE。研究结果表明,采用纳米图形化衬底(NPSS)[30-31],高低温外延生长技术(HT-LT)[32],横向外延生长技术(ELO)[33-35]以及氨气脉冲式多层生长法[36]均能够有效地改善LED器件的晶体质量,降低TDD。另一方面,由ABC复合模型可知,LED的IQE与有源区内辐射复合系数和载流子浓度有着密切的关系[4,25,37-39]。然而,III-V族氮化物具有结构不对称性,使得沿着[0 0 0 1]晶向的LED器件存在很强的极化效应[40],严重影响有源区内的辐射复合系数以及载流子的分布。首先,极化效应会引起有源区内量子限制斯塔克效应(QCSE)[41-42],造成电子和空穴波函数的分离,进而减小了辐射复合系数。为了抑制有源区内的极化效应,研究人员通过对衬底极性以及AlGaInN量子垒材料的选择来削弱有源区内的极化电场[43-46]。然而,上述措施对器件的外延生长水平要求较高,实现起来具有一定的难度。研究表明对量子垒进行不同位置的Si掺杂均可以不同程度上有效地抑制QCSE[29,47-49],实现LED器件性能的改善。来自新加坡南洋理工的Zhang等[50]建议沿着生长方向线性地改变量子垒的组分,利用极化体电荷实现极化电场有效的自屏蔽。其次,极化效应在很大程度上削弱了LED器件的载流子注入效率,导致器件IQE进一步降低[51]。具体而言,极化电场引起能带的弯曲,增加了阻碍载流子注入至量子阱的势垒高度,同时削弱了量子阱对载流子的束缚能力。而对于DUV LED器件而言,载流子注入效率更是一个亟需解决的难题,尤其是空穴注入效率。一方面,相较于InGaN材料,AlGaN材料具有更强的极化强度,能带弯曲更加严重,对载流子的注入效率影响更大。另一方面,随着AlN组分的增加,受主杂质的电离能明显增大,因此很难实现AlGaN材料高效的p型掺杂[52]。为此,Simon等[53]提出沿着[0 0 0 -1]方向线性地增加AlN组分,利用极化电场提高Mg杂质的离化率,从而提高p-AlGaN层的空穴浓度,改善空穴的注入效率。同时,研究发现采用p-AlxGa1-xN/p-AlyGa1-yN(x>y)超晶格型空穴供给层同样可以有效地改善Mg杂质的离化率[54-55]。当然,空穴的注入效率不仅受到p区空穴浓度的影响,而且和空穴的传输路径有着密切的关系,因此需要了解DUV LED器件的结构组成。

2 DUV LED器件结构组成

图1为DUV LED器件典型的外延结构。传统的DUV LED器件主要基于[0 0 0 1]晶向的蓝宝石衬底外延生长。前面提到,AlGaN材料与蓝宝石衬底间存在相当大的晶格失配和热膨胀系数失配。因此,在蓝宝石衬底上需要先后外延生长一层薄的AlN成核层和超晶格缓冲层,从而实现应力释放及位错过滤,改善DUV LED器件的晶体质量[1]。然后再生长Si掺杂的n-AlGaN层作为电子供给层。紧接着是DUV LED器件的有源发光区,即AlxGa1-xN/AlyGa1-yN (x<y) 多量子阱层。为了抑制电子的泄漏,多量子阱层上方需要生长一层p型电子阻挡层 (p-EBL),而且p-EBL中的AlN组分高于量子垒中的AlN组分。最后是由p-AlGaN层和p-GaN层组成的DUV LED器件的空穴供给层[4, 56]。由图 (1) 可以看出,空穴从电极注入,传输过程中依次经过空穴供给层、p-EBL和量子垒层,最终注入到多量子阱(MQWs) 中。因此空穴注入效率与p型欧姆接触电阻、p-AlGaN/p-GaN异质结结构、p-EBL价带中阻碍空穴的势垒高度以及量子垒的组分等因素有着密切的关系。根据空穴的传输路径,研究人员认为需要增加LED器件与p-型电极接触区、p-型空穴注入层、p-型电子阻挡层和有源区中的空穴输运效率;依据这个路线,本文着重探讨了近年来提高DUV LED空穴注入效率的若干措施,包括介电调控的隧穿结[57]、电场存储器[58]、p-AlyGa1-yN/p-AlxGa1-xN/p-AlyGa1-yN(x<y) EBL[59]等。

图 1. DUV LED器件典型的外延结构图

Fig. 1. Schematic of epitaxial structure for DUV LED

下载图片 查看所有图片

3 提高DUV LED空穴注入效率的若干途径

3.1 介电调控隧穿结

图1表明,空穴从电极注入至空穴供给层时,p型欧姆接触电阻对其的影响很大。然而p-GaN层中Mg杂质的掺杂效率低,导致在p-GaN层与金属电极接触的界面处产生明显的耗尽区。为此,研究人员提出采用p+-GaN/n+-GaN传统隧穿结结构作金属接触层,利用n+-GaN层的高Si杂质掺杂效率来改善LED器件的欧姆特性,从而提高空穴从电极的注入效率[60-61]。但是,相较于n+-GaN层的高Si杂质掺杂效率,p+-GaN层的低Mg杂质掺杂效率削弱了隧穿结区的内建电场,增加了LED器件的工作电压。后续研究发现,极化隧穿结可以实现提高空穴注入效率的同时减小LED器件的工作电压。所谓的极化隧穿结是指在p+-GaN/n+-GaN传统隧穿结中间插入一层薄薄的InGaN层,InGaN插入层中会产生一个与p+-GaN/n+-GaN隧穿结内建电场方向一致的极化电场,增加隧穿结区电场强度,有效地改善LED器件的工作电压[62-64]。然而,对于发光波长短于360 nm的DUV LED器件而言,InGaN插入层会引起严重的吸光问题,不利于DUV LED器件的光提取。为此,Li等[57]建议用AlGaN材料代替InGaN材料作插入层并提出了介电调控隧穿结概念。计算结果表明,相较于传统隧穿结和极化隧穿结,介电调控隧穿结更有利于提高空穴注入效率,改善LED器件的IQE和光输出功率。值得注意的是,不同于p+-GaN/InGaN/n+-GaN结构,AlGaN插入层中的极化电场方向与p+-GaN/n+-GaN隧穿结内建电场方向完全相反。换而言之,AlGaN层界面处的正负极化电荷会分别部分抵消p+-GaN层中电离后的受主杂质和n+-GaN层中电离后,施主杂质,不利于增强隧穿结区的电场强度。然而,电场不仅受到正负电荷密度的影响,而且很大程度上取决于耗尽区材料的相对介电常数εr,较小的εr可以有效地增强隧穿结区电场强度。从图2(a)可以看出,AlxGa1-xN材料的相对介电常数随着AlN组分的增加而减小。研究人员选取了Al0.30Ga0.70N材料作插入层,同时保持器件的极化水平为40%。40%的极化水平代表着40%的理论极化电荷参与计算,剩下的60%的理论极化电荷通过产生位错而被释放[65]。得益于Al0.30Ga0.70N插入层较小的介电常数ε,具有介电调控隧穿结的器件(器件A2)在隧穿结区的电场强度明显强于具有传统隧穿结的器件(器件A1)[见图2(b)]。方向沿着[0 0 0 1]晶向的电场为正向电场。因此,具有介电调控隧穿结的UV LED具有更好的光学特性和电学特性。同时,图2(b)中的插图展示了隧穿结区的电场峰值强度与不同极化水平之间的关系。由于AlGaN插入层产生的正负极化电荷能够分别耗尽电离后受主和施主杂质,可以看出随着极化水平增加至80%,隧穿结区的电场强度逐渐减弱。但是,当极化水平增加至100%时,隧穿结区的电场强度并没有如预期被进一步地削弱,反而被明显地增强。这主要是因为当理论极化电荷全部参与计算时,必然耗尽更多的电离后受主和施主杂质,导致耗尽区变宽,所以隧穿结区的电场强度被增强。然而,尽管100%的极化水平会增强隧穿结区的电场强度,但会导致耗尽区变宽,因此不一定能够提高空穴的注入效率。综上可以看出,具有介电调控隧穿结器件的空穴注入效率受到插入层的εr和器件极化水平的共同影响,因此需要研究人员合理地选择插入层的AlN组分以及控制好器件的晶体质量,才能实现器件性能的最优化。Li等对介电调控隧穿结的相关参数作了系统性研究,详细内容见参考文献[ 66]。

图 2. 计算结果。(a) AlxGa1-xN层的相对介电常数和不同AlN组分之间的关系;(b)平衡态时,器件A1与器件A2的隧穿结区电场强度对比图(插图是隧穿结区电场峰值强度与不同极化水平之间的关系图)。图片引自文献[ 57],已获得Wiley的版权许可

Fig. 2. Simulation results. (a) Relative dielectric constant of AlxGa1-xN layer versus AlN composition; (b) electric fields in tunneling regions for devices A1 and A2 at equilibrium (Inset shows peak field intensity versus polarization level). Reproduced from Ref. [57] with permission of Wiley

下载图片 查看所有图片

此外,关于不同隧穿结对DUV LED空穴注入效率的影响,本文也作了相关的初步研究。器件A3为不具有隧穿结的参考器件,而器件A4,A5和A6分别对应着传统隧穿结、极化隧穿结和介电调控隧穿结。由图3(a)可以看出,器件A5和A6隧穿结区的电场明显强于器件A4,而且器件A6的隧穿结区的电场略强于器件A5,这主要是由于AlGaN插入层具有低εr的优点。因此,器件A4,A5和A6有源区内的空穴浓度普遍高于参考器件 A3,而且器件A6的空穴浓度最高[见图3(b)]。然而,器件A5的空穴浓度略低于器件A4,这和隧穿结区的电场分布趋势相反,即器件A5隧穿结区的电场强于器件A4[见图3(a)]。图3(c)中DUV LED器件的光输出功率分布趋势和有源区内空穴浓度分布趋势一致。具有隧穿结器件的光输出功率普遍高于参考器件,其中器件A5的光输出功率低于器件A4,而且器件A6的光输出功率最高。为了进一步解释空穴和光输出功率的分布趋势,图4中给出了4组器件最后一个量子阱中的横向空穴分布。

图 3. 计算结果。(a)注入电流为35 mA 时,器件A4,A5和A6隧穿结区的电场分布;(b)注入电流为35 mA时,器件A3,A4,A5和A6有源区内空穴分布;(c)器件A3,A4,A5和A6的光输出功率和注入电流之间的关系

Fig. 3. Simulation results. (a) Electric field profiles in tunneling regions for devices A4, A5, and A6 at injection current of 35 mA; (b) hole concentration profiles in active region for devices A3, A4, A5, and A6 at current injection of 35 mA; (c) light output power for devices A3, A4, A5, and A6 versus injection current

下载图片 查看所有图片

值得注意的是,图3(b)中数据的截取位置对应着图4中200 μm。因此,可以看出4组器件最后一个量子阱中横向空穴分布趋势与空穴和光输出功率分布趋势一致[见图3(b)和图3(c)]。众所周知,LED器件的横向电阻和纵向电阻对电流拥挤效应有着重要的影响,横向电阻越大,纵向电阻越小,电流拥挤效应越严重[67]。对于具有隧穿结的DUV LED器件而言(器件A4,A5和A6),n+-GaN作为金属电极接触层,减小了DUV LED器件横向电阻,从而改善电流拥挤效应。而器件A4,A5和A6隧穿结中载流子的隧穿概率导致3组器件具有不同的纵向电阻,由此造成3组器件电流扩展程度有很大的区别。研究表明,载流子的隧穿概率主要受到隧穿结区电场、耗尽区宽度及耗尽区材料禁带宽度的综合影响[63]。相较于器件A4,器件A5具有更强的隧穿结区电场,同时InGaN插入层禁带宽度小于GaN材料,因此器件A5的电子隧穿概率明显大于器件A4,这减小了器件A5的纵向电阻,加剧了器件的电流拥挤效应。而对于器件A6而言,尽管其隧穿结区电场最强,但是AlGaN插入层具有很大的禁带宽度,增加了器件的纵向电阻,因此很大程度上改善了DUV LED器件的电流拥挤效应。这有利于缓解LED器件的热效应,增加LED器件的使用寿命。研究表明,采用直接敷铝工艺制备的铝/氧化铝复合陶瓷基板可以增强大功率LED器件的导热性[68],缓解LED器件的热效应。

图 4. 注入电流为35 mA时,器件A3,A4,A5和A6最后一个量子阱中的横向空穴分布

Fig. 4. Lateral hole concentration profiles in last quantum well for devices A3, A4, A5, and A6 at injection current of 35 mA

下载图片 查看所有图片

图5展示了器件A3,A4,A5和A6的电流-电压(I-V)特性曲线。可以看出,虽然器件A4和A6可以明显地改善DUV LED器件的空穴注入效率,但具有隧穿结的器件A4和A6的I-V特性劣于不具有隧穿结的传统器件A3,尤其是具有介电调控隧穿结的器件A6。这主要是由于n+-GaN层和AlGaN插入层增加了器件的串联电阻。相比之下,器件A5结区的电子隧穿概率大于器件A4,减小了DUV LED器件的串联电阻。同时,器件A5的有源区内空穴浓度明显高于器件A3,因此器件A5的I-V特性稍微优于器件A3和A4。最后,器件A6的I-V特性可以通过优化AlGaN插入层的相关参数(AlN组分和厚度)得到明显的改善。

图 5. 器件A3,A4,A5和A6的电流和电压特性曲线

Fig. 5. Current versus applied voltage for devices A3, A4, A5, and A6

下载图片 查看所有图片

3.2 电场存储器

影响空穴注入效率的另一个重要的因素就是p区的空穴浓度及其结构组成。图1指出,DUV LED器件的空穴供给层是由p-AlGaN层和p-GaN层组成的异质结结构。因此,二者之间的带隙差使得异质结界面处产生一个阻碍空穴从p-GaN层注入至p-AlxGa1-xN层的势垒高度Φh[见图6(a)]。为了减小Φh对空穴的阻碍作用,Kuo等[69]提出沿着[0 0 0 1]方向阶梯式降低p-AlxGa1-xN层中的AlN组分。最近,Zhang等[58]发现Φh的存在有利于在p-AlxGa1-xN层形成空穴耗尽区,从而产生一个电场方向沿着[0 0 0 -1]晶向的耗尽电场,如图6(b)所示。其中,方向沿着[0 0 0 1]晶向的电场为正向电场;Ec,Ev,Φh,EfeEfh分别代表着导带、价带、异质结界面处阻碍空穴注入的势垒高度、电子准费米能级和空穴准费米能级。该耗尽电场能够为空穴提供动能与势能,增加空穴跃过p-EBL注入至MQWs的概率。更为重要的是,该耗尽电场并不会被自由载流子所屏蔽,因此空穴可以持续地从中获得能量,研究人员把这种结构称作电场存储器。当然,注入至MQWs中的空穴浓度不仅和空穴能量有关,同时与空穴供给层非平衡态空穴浓度有着直接的关系[70]。当p-AlxGa1-xN层的AlN组分过高,必然导致异质结界面处存在很大的Φh,从而使得p-AlxGa1-xN层的空穴耗尽区变宽,甚至整层被完全耗尽,造成非平衡态空穴浓度极低。因此需要对电荷存储器的概念作更进一步的研究,以揭示其对空穴注入效率的影响。

图 6. p-AlxGa1-xN层界面耗尽区能带图和电场示意图。(a)能带图;(b)电场示意图。图片引自文献[ 58],已获得Optical Society of America的版权许可

Fig. 6. Energy band diagram and electric field profile in interface depletion region of p-AlxGa1-xN layer. (a) Energy band diagram; (b) schematic of electric field profile. Reproduced from Ref. [58] with permission of Optical Society of America

下载图片 查看所有图片

为此,研究人员设计了5组具有不同AlN组分的p-EBL和p-AlxGa1-xN层的器件结构,具体参数见表1表1同时给出了p-AlxGa1-xN/p-GaN异质结界面处价带中的Φh以及空穴供给层中耗尽电场对空穴的做功,电场对载流子的做功公式参考文献[ 70-71]。同时,图7(a)和图7(b)中分别给出了5组器件p-AlxGa1-xN层和p-GaN层的电场分布以及光输出功率对比。可以发现,Φh随着p-AlxGa1-xN层中AlN组分的降低而减小,见表1。“Work”表示p-AlxGa1-xN层中耗尽电场对空穴的做功,其中“-”表示空穴从耗尽电场获得能量。对于空穴供给层为p-GaN/p-GaN的器件而言(Original Device),Φh等于0 meV,空穴供给层中不存在界面耗尽电场,所以电场对空穴的做功低至-277.5 meV,Original device的性能最差。当空穴供给层为p-AlxGa1-xN/p-GaN异质结结构时,p-AlxGa1-xN/p-GaN界面处出现很强的耗尽电场。而且随着AlN组分的增加,该耗尽电场明显增强,同时耗尽区宽度逐渐变宽,空穴获得的能量逐渐增加[见图7(a)和表1]。对于高AlN组分的Reference device和器件B1,Φh高达583 meV和460 meV,故其耗尽区贯穿整个p-Al0.49Ga0.51N层,导致p-Al0.49Ga0.51N层的非平衡态空穴浓度极低。因此,尽管Reference device和器件B1能够给空穴提供足够的能量,但受限于p区的低空穴浓度,二者的器件性能并非最优。而对于器件B2而言,p-Al40Ga60N层耗尽区宽度明显变短,这保证了p-Al40Ga60N层有足够的空穴浓度。同时p-Al40Ga60N层中的耗尽电场给空穴提供了一定的能量,因此器件B2的光输出功率最高。

表 1. 具有不同AlN组分的p-EBL和p-AlxGa1-xN层的器件结构。表格引自文献[ 58],已获得Optical Society of America的版权许可

Table 1. Devices with different AlN compositions for p-EBL and the p-AlxGa1-xN layers. Reproduced from Ref. [58] with permission of Optical Society of America

Devicep-AlxGa1-xN (50 nm)Φh /meVp-EBL (10 nm)Work /meV
Original devicep-GaN0p-Al0.68Ga0.32N EBL-277.50
Reference devicep-Al0.49Ga0.51N583.00p-Al0.68Ga0.32N EBL-7454.70
Device B1p-Al0.49Ga0.51N460.00p-Al0.60Ga0.40N EBL-5456.10
Device B2p-Al0.40Ga0.60N322.00p-Al0.68Ga0.32N EBL-381.97
Device B3p-Al0.30Ga0.70N238.00p-Al0.68Ga0.32N EBL-365.72

查看所有表

图 7. 计算结果。(a) 5组DUV LED器件结构的空穴供给层中对应的电场分布;(b)注入电流为200 A·cm-2时,5组DUV LED器件理论计算得到的光功率。图片7(a)引自文献[ 58],已获得Optical Society of America的版权许可。图片7(b)引自文献[ 4],具体数值总结于文献[ 58]

Fig. 7. Simulation results. (a) Electric field profiles in hole supplier layer for five groups of DUV LED devices; (b) calculated power densities for five groups of DUV LED devices at injection current of 200 A·cm-2. (a) is reproduced from Ref. [58] with permission of Optical Society of America. (b) is reproduced from Ref. [4], and the value is summarized according to the report in Ref. [58]

下载图片 查看所有图片

图8给出了上述器件的I-V特性曲线对比图。图8表明5组器件具有相同的开启电压,但Reference device和器件B1的工作电压迅速分别达到12 V和8 V,该现象可以很好地归因于p-AlGaN层空穴浓度的分布。较之Original device,Reference device的p-AlGaN层空穴被严重耗尽,耗尽区宽度贯穿整个p-AlGaN层[见图7(a)中电场分布图],从而导致Reference device的工作电压很快地达到12 V,极大地增加了Reference device的工作电压。随着p-AlGaN层空穴耗尽区宽度变短,器件的I-V特性逐渐被改善[见图8(b)和图8(c)]。值得注意的是,图8(c)表明器件B2的工作电压高于器件B3。但得益于光输出功率明显高于器件B3[见图7(b)],器件B2的光电转换效率最终高于器件B3。综上所述,研究人员需要对电场存储器结构进行合理的设计,增加空穴能量的同时保证足够的非平衡态空穴浓度,才能提高空穴注入效率并改善DUV LED器件的性能。

图 8. I-V特性对比图。(a) Original device和Reference device;(b) Reference Device和器件B1;(c) Reference Device,器件B2和B3。图片引自文献[ 58],已获得Optical Society of America的版权许可

Fig. 8. I-V characteristic comparison. (a) Original device and Reference device; (b) Reference device and device B1; (c) Reference device, device B2 and device B3. Reproduced from Ref. [58] with permission of Optical Society of America

下载图片 查看所有图片

3.3 p-AlxGa1-xN/AlyGa1-yN/AlxGa1-xN(x>y)EBL

p-EBL是造成DUV LED器件低空穴注入效率的另一个重要原因。由于p-AlGaN层的禁带宽度小于p-EBL,因此p-EBL的价带中存在一定的势垒高度,对空穴具有强烈的阻挡作用。而且,对于沿着[0 0 0 1]晶向的DUV LED器件而言,极化效应加剧了p-EBL对空穴的阻挡作用。研究人员发现采用超晶格EBL、组分渐变的EBL以及提高p-EBL中Mg杂质浓度均能够有效地减小EBL层中价带势垒高度,从而提高LED器件的空穴注入效率[59,72-75]。Zhang等[74]的最新研究成果表明,采用超晶格EBL的DUV LED器件的EQE随着大电流的注入几乎不存在性能衰减,这对于抑制LED器件的“droop effect”(效率衰减效应)具有重要的意义。除了超晶格EBL,Zhang等[59]还提出了p-AlxGa1-xN/AlyGa1-yN/AlxGa1-xN(x>y)EBL新型结构,同样可以有效地提高空穴注入效率,其中AlyGa1-yN插入层靠近p区。图9(a)和图9(b)分别是传统DUV LED器件的能带图(器件C1)和具有p-AlxGa1-xN/AlyGa1-yN/AlxGa1-xN(x>y)EBL的DUV LED器件的能带图(器件C2)。图9(a)中,cP1表示空穴从p-AlGaN层热辐射至有源区的空穴浓度。图9(b)中,cP0表示空穴从p-AlGaN层通过带内跃迁隧穿至p-AlyGa1-yN插入层的空穴浓度,cP1cP2分别表示空穴从p-AlGaN层热辐射至p-AlyGa1-yN插入层和空穴从p-AlyGa1-yN插入层热辐射至有源区的空穴浓度,L1和L2分别表示靠近量子垒和p-AlGaN层的p-AlxGa1-xN层。对于器件C1,p-EBL价带中的势垒高度使得大量空穴积聚在p-EBL/p-AlGaN层的界面处,而且界面处的负极化面电荷加剧了空穴的积聚[见图9(c)]。只有少数具有高能量的空穴才能通过热辐射传输至有源区。而采用p-AlxGa1-xN/AlyGa1-yN/AlxGa1-xN(x>y)EBL后(器件C2),由于AlyGa1-yN插入层的带隙相对小于p-AlxGa1-xN层且靠近p-AlGaN层(L2很薄),空穴可以通过带内跃迁隧穿至AlyGa1-yN插入层。同时,部分空穴通过热辐射输运至AlyGa1-yN插入层,因此p-AlxGa1-xN层和p-AlGaN层界面处空穴积聚减小,AlyGa1-yN插入层中空穴浓度增加[见图9(c)]。由公式ΦhEv-KT×ln(p/Nv)可知[76],阻碍空穴注入的势垒高度与价带阶跃和空穴浓度密切相关。其中,ΦhEv,K,T,pNv分别代表价带中的势垒高度、价带阶跃、玻尔兹曼常数、载流子温度、空穴浓度和空穴的有效态密度。所以,靠近量子垒的p-AlxGa1-xN层价带中的势垒高度明显减小,增强了空穴注入至有源区的能力。

图 9. 示意图和计算结果。(a)传统的p-EBL和(b)具有p-AlxGa1-xN/AlyGa1-yN/AlxGa1-xN(x>y)EBL的DUV LED器件的能带示意图;(c) p-EBL和p-AlGaN层的空穴分布图。图片引自文献[ 59],已获得 American Chemical Society的版权许可

Fig. 9. Schematic and simulation results. Schematic of energy bands for (a) DUV LED with the conventional p-EBL and (b) DUV LED with the p-AlxGa1-xN/AlyGa1-yN/AlxGa1-xN (x>y) EBL; (c) hole concentration profiles in p-EBL and p-AlGaN layers. Reproduced from Ref. [59] with permission of American Chemical Society

下载图片 查看所有图片

图 10. 计算结果和实验结果。(a)器件C1和器件C2量子阱中空穴浓度分布图;(b)实验测得的器件C1和器件C2的光输出功率和EQE;(c)理论计算得到的器件C1和器件C2的光输出功率和EQE。图片引自文献[ 59],已获得American Chemical Society的版权许可

Fig. 10. Simulation and experimental results. (a) Hole concentration profiles in quantum wells for devices C1 and C2; (b) measured optical power and EQE for devices C1 and C2; (c) calculated optical power and EQE for devices C1 and C2. Reproduced from Ref. [59] with permission of American Chemical Society

下载图片 查看所有图片

图10(a)是器件C1和C2量子阱中空穴浓度分布图。器件C2的空穴浓度明显高于器件C1,这主要是由于器件C2的p-EBL价带中的势垒高度变小。图10(b)和图10(c)分别给出了实验和理论得到的两组器件光输出功率和EQE,可以发现实验和理论计算得到的结果趋势一致,器件C2的性能明显优于器件C1。这些充分佐证了p-AlxGa1-xN/AlyGa1-yN/AlxGa1-xN EBL可以显著提高空穴注入效率,改善DUV LED器件的光输出功率和EQE的结论。最后,为了进一步揭示物理规律以及指导实验,Chu等[77-78]对AlyGa1-yN插入层的宽度、插入位置以及AlN组分作了相关系统性的研究。研究结果表明,AlyGa1-yN插入层要尽可能地靠近p区,从而增强p-EBL/p-AlGaN界面处空穴的带内隧穿,提高空穴注入效率。而对于AlyGa1-yN插入层的宽度和AlN组分而言,需要研究人员对其进行合理的选择优化,较好地权衡空穴的带内隧穿机制与价带中的阻碍势垒高度之间的关系。

3.4 p-EBL/p-AlGaN/p-GaN界面极化效应对空穴注入的影响

此外,极化效应对载流子的分布及输运也有着重要的影响。Tian等[79]发现[0 0 0 1]晶向DUV LED器件空穴浓度明显高于[0 0 0 -1]晶向的DUV LED器件,而且增加p-EBL/p-AlGaN/p-GaN界面处极化水平,可以提高DUV LED器件的空穴注入效率。图11(a)给出在注入电流为35 mA时,DUV LED器件光输出功率与不同极化水平之间的关系。其中,“-1”表示DUV LED器件基于氮极性衬底外延生长,而且器件结构内部不存在应力释放,理论极化电荷全部参与计算。可以看出,DUV LED器件的性能随着极化水平的增加而被改善,同时沿着[0 0 0 1]晶向的DUV LED器件性能明显优于沿着[0 0 0 -1]晶向的DUV LED器件。有趣的是,这些现象有悖于蓝光LED中得到的一些结论。一方面,Meyaard等[80]证明氮极性的p-EBL/p-GaN可以有效地抑制蓝光LED器件的电子泄漏,改善器件的IQE。另一方面,极化水平越高,量子阱中QCSE现象越严重,载流子辐射复合率越低[69]。为此,研究人员选取了极化水平分别为-0.8,-0.4,0,0.4和0.8的器件D1,D2,D3,D4和D5作更深一步的研究。研究结果表明,随着极化水平从-0.8增加至0.8,注入至MQWs的空穴浓度逐渐增加[见图11(b)],而且[0 0 0 1]晶向的DUV LED器件空穴浓度明显高于[0 0 0 -1]晶向的器件,这也有力地解释了图11(a)中观察到的现象。图11(b)还表明了空穴在p-GaN层、p-AlGaN层和p-EBL分布差异很大。为此,研究人员先后改变了p-AlGaN/p-GaN、p-EBL/p-AlGaN和p-EBL/p-AlGaN/p-GaN界面处的极化水平,同时保持剩下层的极化水平为0.4,以揭示极化水平对空穴注入效率的影响。

图 11. 注入电流为 35mA时计算结果。(a) DUV LED器件光输出功率与极化水平之间的关系;(b)器件D1,D2,D3,D4和D5的量子阱,及p-AlGaN层和p-GaN层中空穴分布图。图片引自文献[ 79],已获得Elsevier的版权许可

Fig. 11. Simulation results at injection current of 35 mA. (a) Light output power for DUV LEDs in terms of the polarization level; (b) hole concentration profiles in quantum wells, p-AlGaN layer and p-GaN layer for devices D1, D2, D3, D4, and D5. Reproduced from Ref. [79] with permission of Elsevier

下载图片 查看所有图片

研究结果表明,p-EBL/p-AlGaN/p-GaN界面处的极化水平是造成图11中光输出功率和空穴分布规律的根本原因[见图11,图12(a)和图12(b)]。研究人员针对性选取了极化水平分别为-0.2,0,0.2和0.6的器件D6,D7,D8和D9作进一步的解释。可以发现,当p-EBL/p-AlGaN/p-GaN界面处的电荷为正极化电荷(器件D6),p-EBL/p-AlGaN/p-GaN界面处会存在严重的空穴耗尽区,降低了p-AlGaN层和p-GaN层中非平衡态空穴浓度。更重要的是该耗尽区电场的方向和空穴传输路径相反,因此对空穴起到减速作用[见图12(c)和表2]。其中,方向沿着[0 0 0 1]晶向的电场为正向电场,除正向电场之外,p-EBL/p-AlGaN界面处的正极化电荷增加了p-EBL价带中的势垒高度。基于以上3点,器件D6量子阱中的空穴浓度最低,光输出功率最小。随着极化水平从0增加至0.6(器件D7,D8和D9),p-EBL/p-AlGaN/p-GaN界面处的电荷转为负极化电荷,空穴耗尽区缩短,增加了p-AlGaN层和p-GaN层中的非平衡态空穴浓度。此外,电场方向和空穴传输路径方向一致,而且电场对空穴做功随着极化水平逐渐增加[见表2]。其中“-”表示空穴从电场获得能量。同时,由于负极化电荷吸引空穴,并使其在p-EBL/p-AlGaN界面处积聚,降低了p-EBL价带中的势垒高度[59]。因此,DUV LED器件MQWs内的空穴浓度和光输出功率随着p-EBL/p-AlGaN/p-GaN界面处极化水平的增加而增加。综上所述,研究人员建议:采用p-EBL/p-AlGaN/p-GaN这种目前最为常用的p-型层的DUV LED器件,应基于金属极性衬底外延生长,同时通过减小p-EBL/p-AlGaN/p-GaN界面处的应力释放来增加极化水平,从而改善DUV LED器件的空穴注入效率和光输出功率。

图 12. 注入电流为35 mA时的计算结果。(a) DUV LED器件光输出功率和p-EBL/p-AlGaN/p-GaN界面处的极化水平之间的关系;(b)器件 D6,D7,D8和 D9量子阱和p-AlGaN/p-GaN层中空穴分布;(c)器件 D6,D7,D8和 D9的电场分布图。图片引自文献[ 79],已获得Elsevier的版权许可

Fig. 12. Simulation results at injection current of 35 mA. (a) Light output power for DUV LED versus polarization level at p-EBL/p-AlGaN/p-GaN interface; (b) hole concentration profiles in quantum well, p-AlGaN layer and p-GaN layer for devices D6, D7, D8, and D9; (c) electric field profiles for devices D6, D7, D8, and D9. Reproduced from Ref. [79] with permission of Elsevier

下载图片 查看所有图片

表 2. 注入电流为35 mA时,器件D6,D7,D8和D9的p-AlGaN/p-GaN层中的电场对空穴的做功。表格引自文献[ 79],已获得Elsevier的版权许可

Table 2. Work done to holes by electric field within p-AlGaN/p-GaN structure for devices D6, D7, D8, and D9 at injection current of 35 mA. Reproduced from Ref. [79] with permission of Elsevier

DevicesD6D7D8D9
Work /meV+236-323-526-652

查看所有表

3.5 不同AlN组分的量子垒

由于空穴具有低迁移率的特点,因此空穴在量子阱中的分布与量子垒价带中的势垒高度有着密切的关系。为削弱量子垒对空穴的阻碍作用,研究人员建议沿着[0 0 0 -1]方向逐渐增加量子垒的厚度,从而使空穴在量子阱中均匀分布[81-82]。最新研究结果表明,均匀的空穴分布对DUV LED器件性能的影响不再像蓝光LED中那么明显[4]。Zhang等[83]以AlGaN基UVA LED作为研究基点,当增加AlGaN量子垒中的AlN组分,尽管空穴分布均匀性变差,但量子阱中的空穴浓度显著提高,UVA LED器件性能明显改善[83]。器件E1,E2和E3对应的量子垒材料分别为Al0.02Ga0.98N,Al0.08Ga0.92N和Al0.10Ga0.90N。图13表明,量子阱中的电子和空穴浓度均随着量子垒中AlN组分的增加而升高。电子浓度的升高是由于量子阱对电子的束缚能力被增强。然而,具有高AlN组分的量子垒对空穴的阻碍作用也会变得更加明显,理论上不利于空穴的注入。

图14(a)给出UVA LED器件对应的能带示意图。可以发现,由于材料间的极化失配,最后一个量子垒与p-EBL界面处会产生正极化面电荷,对空穴具有明显的耗尽作用,从而抬高阻碍空穴注入的Φh。而随着量子垒中AlN组分的增加,最后一个量子垒和p-EBL之间的极化失配度减小,因此对空穴的耗尽减弱,Φh变小。理论结果表明,器件E1,E2和E3对应的Φh分别为397.6,339.1,308.5 meV。因此,器件E3量子阱中的空穴浓度最高[见图13(b)]。图14(b)给出器件E1,E2和E3从实验和理论计算上得到的光输出功率。可以发现,实验结果和理论计算结果呈现高度吻合,随着量子垒中AlN组分的增加,器件的光输出功率得到明显改善,这主要得益于量子阱中电子和空穴浓度的升高。综上所述,适当地增加量子垒中的AlN组分可以显著增加量子阱中载流子的浓度,从而实现DUV LED器件性能的改善。当然,如果量子垒中的AlN组分过高,尽管量子阱中载流子浓度变高,但量子阱和量子垒间的极化失配度增加,加剧QCSE,从而削弱DUV LED器件的性能,所以最终的器件结构需要根据不同的状况进行合理的优化和选择。

图 13. 注入电流密度为100 A/cm2时,器件E1,E2和E3量子阱中的载流子分布。(a)电子分布;(b)空穴分布。图片引自文献[ 83],已获得Optical Society of America的版权许可

Fig. 13. Carrier concentration profiles for devices E1, E2, and E3 at injection current of 100 A/cm2. (a) Electron profiles; (b) hole profiles. Reproduced from Ref. [83] with permission of Optical Society of America

下载图片 查看所有图片

图 14. 能带示意图与光输出功率。(a) UVA LED器件能带示意图;(b)器件E1,E2和E3实验(曲线)和理论(散点)计算得到的光输出功率。图片引自文献[ 84],已获得Optical Society of America的版权许可

Fig. 14. Energy band diagram and optical output power. (a) Schematic of energy bands for UVA LED; (b) measured (curve) and calculated (scatterplot) optical powers for devices E1,E2, and E3 in terms of current. Reproduced from Ref. [84] with permission of Optical Society of America

下载图片 查看所有图片

4 结论

空穴注入效率对基于AlGaN材料的DUV LED器件的IQE有着重要的影响。一方面,AlGaN材料很难实现高效的Mg杂质掺杂;另一方面,空穴具有低迁移率的特点,而且在输运的过程中需要克服价带中的势垒高度。因此,本工作比较系统地总结分析了提高DUV LED空穴注入效率的诸多措施,揭示了一些重要的物理机理,对DUV LED器件的研究具有一定参考性。首先,研究人员提出了p+-GaN/AlGaN/n+-GaN介电调控隧穿结,其中n+-GaN层作金属接触层,可以实现提高空穴注入效率的同时降低DUV LED器件的工作电压。这主要是因为AlGaN插入层具有低介电常数的优点,增强了隧穿结区的电场强度。其次,关于DUV LED器件空穴供给层的结构组成(p-AlGaN/GaN),研究人员创新性地介绍了电场存储器的概念,即p-AlGaN层和p-GaN层的界面处存在的势垒高度使得p-AlGaN层中产生一个方向沿着[0 0 0 -1]晶向的耗尽电场。该耗尽电场增加了空穴的动能和势能,提高了空穴注入至有源区的概率。而针对p-EBL价带中的势垒高度,研究人员提出p-AlxGa1-xN/AlyGa1-yN/AlxGa1-xN(x>y)EBL,增加了空穴带内跃迁隧穿过程,减小了空穴在p-EBL和p-AlGaN层界面处的积聚。同时,AlyGa1-yN插入层中空穴的积聚拉低了p-AlxGa1-xN层对空穴的阻碍势垒高度。除此之外,研究人员还发现金属极性衬底更有利于空穴的输运,而且[0 0 0 1]晶向DUV LED器件有源区内空穴浓度随着p-EBL/p-AlGaN/p-GaN界面处的极化水平的增加而升高。最后,研究人员还发现最后一个量子垒和p-EBL界面处的正极化电荷增加了p-EBL对空穴的阻碍势垒高度。因此,研究人员建议通过适当地增加AlGaN量子垒中AlN组分,来减小最后一个量子垒和p-EBL间极化失配度,削弱p-EBL对空穴的阻碍作用,从而增加量子阱中的空穴浓度。

随着外延生长技术不断革新与发展,上述几种器件结构设计能够最大程度地提高空穴注入效率,改善DUV LED的器件性能。但是,相较于蓝光LED中成熟的物理理论体系,目前关于DUV LED的物理机理的研究还比较少,尚处在摸索阶段。载流子在AlGaN/AlGaN MQWs中的输运机制的研究还比较匮乏,基于高Al组分AlGaN/AlGaN MQWs中的QCSE更加严重,高Al组分的p-AlGaN层电导性较差,极易产生电流拥挤效应以及附加的热效应。基于高Al组分的p-AlGaN和n-AlGaN层较难实现优良的欧姆接触。由于电子的迁移率较高,电子的注入效率需要谨慎对待,深紫外发光二极管独特的光极化特性使光提取效率较低,这些影响深紫外发光二极管光效的因素都需要投入研究精力,因此关于DUV LED器件的物理研究任重道远,需要科研人员进行大量的理论分析和实践检验,直至达成普遍的认知。

参考文献

[1] Wang J X, Yan J C, Guo Y N, et al. Recent progress of research on III-nitride deep ultraviolet light-emitting diode[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2015, 45(6): 067303.

[2] Khan A, Balakrishnan K, Katona T. Ultraviolet light-emitting diodes based on group three nitrides[J]. Nature Photonics, 2008, 2(2): 77-84.

[3] Kim K H, Fan Z Y, Khizar M, et al. AlGaN-based ultraviolet light-emitting diodes grown on AlN epilayers[J]. Applied Physics Letters, 2004, 85(20): 4777-4779.

[4] Li L P, Zhang Y H, Xu S, et al. On the hole injection for III-nitride based deep ultraviolet light-emitting diodes[J]. Materials, 2017, 10(10): 1221.

[5] Fujioka A, Asada K, Yamada H, et al. High-output-power 255/280/310 nm deep ultraviolet light-emitting diodes and their lifetime characteristics[J]. Semiconductor Science and Technology, 2014, 29(8): 084005.

[6] Chen Q, Zhang H X, Dai J N, et al. Enhanced the optical power of AlGaN-based deep ultraviolet light-emitting diode by optimizing mesa sidewall angle[J]. IEEE Photonics Journal, 2018, 10(4): 6100807.

[7] Hirayama H, Tsukada Y. MaedaT, et al. Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer[J]. Applied Physics Express, 2010, 3(3): 031002.

[8] Nam K B, Li J, Nakarmi M L, et al. Unique optical properties of AlGaN alloys and related ultraviolet emitters[J]. Applied Physics Letters, 2004, 84(25): 5264-5266.

[9] Zhang J, Zhao H P, Tansu N. Effect of crystal-field split-off hole and heavy-hole bands crossover on gain characteristics of high Al-content AlGaN quantum well lasers[J]. Applied Physics Letters, 2010, 97(11): 111105.

[10] Vurgaftman I, Meyer J R. Band parameters for nitrogen-containing semiconductors[J]. Journal of Applied Physics, 2003, 94(6): 3675-3696.

[11] Lu H M, Yu T J, Yuan G C, et al. Valence subband coupling effect on polarization of spontaneous emissions from Al-rich AlGaN/AlN Quantum Wells[J]. Optics Express, 2012, 20(25): 27384-27392.

[12] Wang W Y, Lu H M, Fu L, et al. Enhancement of optical polarization degree of AlGaN quantum wells by using staggered structure[J]. Optics Express, 2016, 24(16): 18176-18183.

[13] Ryu H Y, Choi I G, Choi H S, et al. Investigation of light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes[J]. Applied Physics Express, 2013, 6(6): 062101.

[14] Long H L, Wu F, Zhang J, et al. Anisotropic optical polarization dependence on internal strain in AlGaN epilayer grown on AlxGa1-xN templates[J]. Journal of Physics D: Applied Physics, 2016, 49(41): 415103.

[15] Long H L, Wang S, Dai J N, et al. Internal strain induced significant enhancement of deep ultraviolet light extraction efficiency for AlGaN multiple quantum wells grown by MOCVD[J]. Optics Express, 2018, 26(2): 680-686.

[16] Fu D, Zhang R, Wang B G, et al. Ultraviolet emission efficiencies of AlxGa1-xN films pseudomorphically grown on AlyGa1-yN template (x. Thin Solid Films, 2011, 519(22): 8013-8017.

[17] Su C Y, Tsai M C, Chou K P, et al. Method for enhancing the favored transverse-electric-polarized emission of an AlGaN deep-ultraviolet quantum well[J]. Optics Express, 2017, 25(22): 26365-26377.

[18] Taniyasu Y, Kasu M. Polarization property of deep-ultraviolet light emission from C-plane AlN/GaN short-period superlattices[J]. Applied Physics Letters, 2011, 99(25): 251112.

[19] Liu C, Ooi Y K, Islam S M, et al. Physics and polarization characteristics of 298 nm AlN-delta-GaN quantum well ultraviolet light-emitting diodes[J]. Applied Physics Letters, 2017, 110(7): 071103.

[20] Northrup J E, Chua C L, Yang Z, et al. Effect of strain and barrier composition on the polarization of light emission from AlGaN/AlN quantum wells[J]. Applied Physics Letters, 2012, 100(2): 021101.

[21] Sharma T K, Naveh D, Towe E. Strain-driven light-polarization switching in deep ultraviolet nitride emitters[J]. Physical Review B, 2011, 84(3): 035305.

[22] Reich C, Guttmann M, Feneberg M, et al. Strongly transverse-electric-polarized emission from deep ultraviolet AlGaN quantum well light emitting diodes[J]. Applied Physics Letters, 2015, 107(14): 142101.

[23] 胡永禄, 刘道柳, 王博, 等. 表面微腔光子晶体LED的光提取特性[J]. 光学学报, 2017, 37(6): 0623004.

    Hu Y L, Liu D L, Wang B, et al. Characteristics of light extraction for surface-microcavity photonic crystal LED[J]. Acta Optica Sinica, 2017, 37(6): 0623004.

[24] 刘顺瑞, 王丽, 孙艳军, 等. 利用截头圆锥形仿生蛾眼结构提高LED光提取效率[J]. 光学学报, 2018, 38(1): 0122001.

    Liu S R, Wang L, Sun Y J, et al. Enhancement of light extraction efficiency of LED by bionic moth-eye structure with frustum of a cone[J]. Acta Optica Sinica, 2018, 38(1): 0122001.

[25] Verzellesi G, Saguatti D, Meneghini M, et al. Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies[J]. Journal of Applied Physics, 2013, 114(7): 071101.

[26] Imura M, Nakano K, Fujimoto N, et al. Dislocations in AlN epilayers grown on sapphire substrate by high-temperature metal-organic vapor phase epitaxy[J]. Japanese Journal of Applied Physics, 2007, 46(4A): 1458-1462.

[27] Follstaedt D M, Lee S R, Provencio P P, et al. Relaxation of compressively-strained AlGaN by inclined threading dislocations[J]. Applied Physics Letters, 2005, 87(12): 121112.

[28] Ren Z, Sun Q, Kwon S Y, et al. Heteroepitaxy of AlGaN on bulk AlN substrates for deep ultraviolet light emitting diodes[J]. Applied Physics Letters, 2007, 91(5): 051116.

[29] Tian K K, Chen Q, Chu C S, et al. Investigations on AlGaN-based deep-ultraviolet light-emitting diodes with Si-doped quantum barriers of different doping concentrations[J]. Physica Status Solidi (RRL) - Rapid Research Letters, 2018, 12(1): 1700346.

[30] Dong P, Yan J C, Wang J X, et al. 282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates[J]. Applied Physics Letters, 2013, 102(24): 241113.

[31] Zhang L S, Xu F J, Wang J M, et al. High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography[J]. Scientific Reports, 2016, 6: 35934.

[32] Zhang X, Xu F J, Wang J M, et al. Epitaxial growth of AlN films on sapphire via a multilayer structure adopting a low- and high-temperature alternation technique[J]. CrystEngComm, 2015, 17(39): 7496-7499.

[33] Imura M, Nakano K, Narita G, et al. Epitaxial lateral overgrowth of AlN on trench-patterned AlN layers[J]. Journal of Crystal Growth, 2007, 298: 257-260.

[34] Mogilatenko A, Küller V, Knauer A, et al. Defect analysis in AlGaN layers on AlN templates obtained by epitaxial lateral overgrowth[J]. Journal of Crystal Growth, 2014, 402: 222-229.

[35] Park J S, Kim J K, Cho J, et al. Review: Group III-nitride-based ultraviolet light-emitting diodes: Ways of increasing external quantum efficiency[J]. ECS Journal of Solid State Science and Technology, 2017, 6(4): Q42-Q52.

[36] Hirayama H, Fujikawa S, Noguchi N, et al. 222-282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire[J]. Physica Status Solidi (a), 2009, 206(6): 1176-1182.

[37] Ryu H Y, Kim H S, Shim J I. Rate equation analysis of efficiency droop in InGaN light-emitting diodes[J]. Applied Physics Letters, 2009, 95(8): 081114.

[38] Piprek J. Efficiency droop in nitride-based light-emitting diodes[J]. Physica Status Solidi (a), 2010, 207(10): 2217-2225.

[39] Zhang Z H, Zhang Y H, Bi W G, et al. On the internal quantum efficiency for InGaN/GaN light-emitting diodes grown on insulating substrates[J]. Physica Status Solidi (a), 2016, 213(12): 3078-3102.

[40] Schubert EF. Light Emitting Diodes[M]. 2nd ed. England: Cambridge University Press, 2006.

[41] Miller D A B, Chemla D S, Damen T C, et al. . Band-edge electroabsorption in quantum well structures: The quantum-confined stark effect[J]. Physical Review Letters, 1984, 53(22): 2173.

[42] Schwarz U T, Braun H, Kojima K, et al. Interplay of built-in potential and piezoelectric field on carrier recombination in green light emitting InGaN quantum wells[J]. Applied Physics Letters, 2007, 91(12): 123503.

[43] Chichibu S F, Yamaguchi H, Zhao L, et al. Improved characteristics and issues of m-plane InGaN films grown on low defect density m-plane freestanding GaN substrates by metalorganic vapor phase epitaxy[J]. Applied Physics Letters, 2008, 93(15): 151908.

[44] Masui H, Nakamura S, Denbaars S P, et al. Nonpolar and semipolar III-nitride light-emitting diodes: Achievements and challenges[J]. IEEE Transactions on Electron Devices, 2010, 57(1): 88-100.

[45] Kim D S, Lee S, Young Kim D, et al. Highly stable blue-emission in semipolar (11-22) InGaN/GaN multi-quantum well light-emitting diode[J]. Applied Physics Letters, 2013, 103(2): 021111.

[46] Chang J Y, Kuo Y K. Influence of polarization-matched AlGaInN barriers in blue InGaN light-emitting diodes[J]. Optics Letters, 2012, 37(9): 1574-1576.

[47] Ryou J H, Limb J, Lee W, et al. Effect of silicon doping in the quantum-well barriers on the electrical and optical properties of visible green light-emitting diodes[J]. IEEE Photonics Technology Letters, 2008, 20(21): 1769-1771.

[48] Fiorentini V, Bernardini F, Della Sala F, et al. Effects of macroscopic polarization in III-V nitride multiple quantum wells[J]. Physical Review B, 1999, 60(12): 8849.

[49] Zhang Z H, Tan S T, Ju Z G, et al. On the effect of step-doped quantum barriers in InGaN/GaN light emitting diodes[J]. Journal of Display Technology, 2013, 9(4): 226-233.

[50] Zhang Z H, Liu W, Ju Z G, et al. Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers[J]. Applied Physics Letters, 2014, 104(24): 243501.

[51] Cho J, Schubert E F, Kim J K. Efficiency droop in light-emitting diodes: Challenges and countermeasures[J]. Laser & Photonics Reviews, 2013, 7(3): 408-421.

[52] Katsuragawa M, Sota S, Komori M, et al. 189-[J]. Mg in AlGaN. Journal of Crystal Growth, 1998, 190: 528-531.

[53] Simon J, Protasenko V, Lian C, et al. Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures[J]. Science, 2010, 327(5961): 60-64.

[54] Schubert E F, Grieshaber W, Goepfert I D. Enhancement of deep acceptor activation in semiconductors by superlattice doping[J]. Applied Physics Letters, 1996, 69(24): 3737-3739.

[55] Kumakura K, Makimoto T, Kobayashi N. Efficient hole generation above 10 19 cm -3 in Mg-doped InGaN/GaN superlattices at room temperature [J]. Japanese Journal of Applied Physics, 2000, 39(3AB): L195-L196.

[56] Jo M, Maeda N, Hirayama H. Enhanced light extraction in 260 nm light-emitting diode with a highly transparent p-AlGaN layer[J]. Applied Physics Express, 2016, 9(1): 012102.

[57] Li L P, Shi Q, Tian K K, et al. A dielectric-constant-controlled tunnel junction for III-nitride light-emitting diodes[J]. Physica Status Solidi (a), 2017, 214(6): 1600937.

[58] Zhang Z H, Li L P, Zhang Y H, et al. On the electric-field reservoir for III-nitride based deep ultraviolet light-emitting diodes[J]. Optics Express, 2017, 25(14): 16550-16559.

[59] Zhang Z H. Huang Chen S W, Zhang Y H, et al. Hole transport manipulation to improve the hole injection for deep ultraviolet light-emitting diodes[J]. ACS Photonics, 2017, 4(7): 1846-1850.

[60] Neugebauer S, Hoffmann M P, Witte H, et al. All metalorganic chemical vapor phase epitaxy of p/n-GaN tunnel junction for blue light emitting diode applications[J]. Applied Physics Letters, 2017, 110(10): 102104.

[61] Jeon S R, Song Y H, Jang H J, et al. Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions[J]. Applied Physics Letters, 2001, 78(21): 3265-3267.

[62] Krishnamoorthy S, Nath D N, Akyol F, et al. Polarization-engineered GaN/InGaN/GaN tunnel diodes[J]. Applied Physics Letters, 2010, 97(20): 203502.

[63] Zhang Z H, Tiam Tan S, Kyaw Z, et al. InGaN/GaN light-emitting diode with a polarization tunnel junction[J]. Applied Physics Letters, 2013, 102(19): 193508.

[64] Krishnamoorthy S, Akyol F, Rajan S. InGaN/GaN tunnel junctions for hole injection in GaN light emitting diodes[J]. Applied Physics Letters, 2014, 105(14): 141104.

[65] Fiorentini V, Bernardini F, Ambacher O. Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures[J]. Applied Physics Letters, 2002, 80(7): 1204-1206.

[66] Li L P, Zhang Y H, Tian K K, et al. Numerical investigations on the n +-GaN/AlGaN/p +-GaN tunnel junction for III-nitride UV light-emitting diodes [J]. Physica Status Solidi (a), 2017, 214(12): 1700624.

[67] Zhang Z H, Tan S T, Liu W, et al. Improved InGaN/GaN light-emitting diodes with a p-GaN/n-GaN/p-GaN/n-GaN/p-GaN current-spreading layer[J]. Optics Express, 2013, 21(4): 4958-4969.

[68] 朱海涛, 傅仁利, 费盟, 等. 铝/氧化铝复合基板封装的LED光源的光热特性[J]. 光学学报, 2017, 37(10): 1023002.

    Zhu H T, Fu R L, Fei M, et al. Optical and thermal performance of LED light source packaged by Al/Al2O3 composite substrate[J]. Acta Optica Sinica, 2017, 37(10): 1023002.

[69] Kuo Y K, Chang J Y, Chen F M, et al. Numerical investigation on the carrier transport characteristics of AlGaN deep-UV light-emitting diodes[J]. IEEE Journal of Quantum Electronics, 2016, 52(4): 3300105.

[70] Zhang Z H, Liu W, Tan S T, et al. A hole accelerator for InGaN/GaN light-emitting diodes[J]. Applied Physics Letters, 2014, 105(15): 153503.

[71] Zhang Z H, Zhang Y H, Bi W G, et al. On the hole accelerator for III-nitride light-emitting diodes[J]. Applied Physics Letters, 2016, 108(15): 151105.

[72] Yun Y Z, Yi A Y. Performance enhancement of blue light-emitting diodes with a special designed AlGaN/GaN superlattice electron-blocking layer[J]. Applied Physics Letters, 2011, 99(22): 221103.

[73] Li Y, Chen S C, Tian W, et al. Advantages of AlGaN-based 310-nm UV light-emitting diodes with al content graded AlGaN electron blocking layers[J]. IEEE Photonics Journal, 2013, 5(4): 8200309.

[74] Zhang Z H. Huang Chen S W, Chu C S, et al. Nearly efficiency-droop-free AlGaN-based ultraviolet light-emitting diodes with a specifically designed superlattice p-type electron blocking layer for high mg doping efficiency[J]. Nanoscale Research Letters, 2018, 13: 122.

[75] Su C Y, Tu C G, Liu W H, et al. Enhancing the hole-injection efficiency of a light-emitting diode by increasing mg doping in the p-AlGaN electron-blocking layer[J]. IEEE Transactions on Electron Devices, 2017, 64(8): 3226-3233.

[76] Zhang Z H, Ju Z G, Liu W, et al. Improving hole injection efficiency by manipulating the hole transport mechanism through p-type electron blocking layer engineering[J]. Optics Letters, 2014, 39(8): 2483-2486.

[77] Chu C S, Tian K K, Fang M Q, et al. Structural design and optimization of deep-ultraviolet light-emitting diodes with AlxGa1-xN/AlyGa1-yN/AlxGa1-xN(x>y) p-electron blocking layer[J]. Journal of Nanophotonics, 2018, 12(4): 043503.

[78] Chu C S, Tian K K, Fang M Q, et al. On the AlxGa1-xN/AlyGa1-yN/AlxGa1-xN(x>y) p-electron blocking layer to improve the hole injection for AlGaN based deep ultraviolet light-emitting diodes[J]. Superlattices and Microstures, 2018, 113: 472-477.

[79] Tian K K, Chu C S, Shao H, et al. On the polarization effect of the p-EBL/p-AlGaN/p-GaN structure for AlGaN-based deep-ultraviolet light-emitting diodes[J]. Superlattices and Microstructures, 2018, 122: 280-285.

[80] Meyaard D S, Lin G B, Ma M, et al. GaInN light-emitting diodes using separate epitaxial growth for the p-type region to attain polarization-inverted electron-blocking layer, reduced electron leakage, and improved hole injection[J]. Applied Physics Letters, 2013, 103: 201112.

[81] Kim S J, Kim T G. Deep-ultraviolet AlGaN light-emitting diodes with variable quantum well and barrier widths[J]. Physica Status Solidi (a), 2014, 211(3): 656-660.

[82] Tsai M C, Yen S H, Kuo Y K. Deep-ultraviolet light-emitting diodes with gradually increased barrier thicknesses from n-layers to p-layers[J]. Applied Physics Letters, 2011, 98(11): 111114.

[83] Zhang Z H, Chu C S, Chiu C H, et al. UVA light-emitting diode grown on Si substrate with enhanced electron and hole injections[J]. Optics Letters, 2017, 42(21): 4533-4536.

田康凯, 楚春双, 毕文刚, 张勇辉, 张紫辉. AlGaN基深紫外发光二极管空穴注入效率的提高途径[J]. 激光与光电子学进展, 2019, 56(6): 060001. Kangkai Tian, Chunshuang Chu, Wengang Bi, Yonghui Zhang, Zihui Zhang. Hole Injection Efficiency Improvement for AlGaN-Based Deep Ultraviolet Light-Emitting Diodes[J]. Laser & Optoelectronics Progress, 2019, 56(6): 060001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!