光子学报, 2017, 46 (9): 0912003, 网络出版: 2017-10-16   

基于机载光电平台的双机交会定位方法

Two-UAV Intersection Localization Based on the Airborne Optoelectronic Platform
作者单位
1 中国科学院长春光学精密机械与物理研究所,长春 130033
2 中国科学院大学,北京 100049
摘要
根据现有无人机光电定位方法对动态目标定位的局限性,借鉴光电经纬仪角度交会定位方法,提出改进的基于机载光电平台的双机交会定位系统.介绍了交会定位系统的构成及其工作原理,构建辅助坐标系,对视轴向量进行齐次坐标转换,建立双机交会定位模型.研究了交会定位中载机相对目标位置对定位精度的影响,给出了理想的测量位置,得到最优定位位置,最优交会角为69.984°.最优位置下,当目标距离双机基线20 km时,定位均方根误差为38.043 4 m.分析了卡尔曼滤波对定位结果的影响,建立合适的滤波模型,滤波后的定位均方根误差减小到13.584 2 m.
Abstract
To address the limitation of existing unmannedaerialvehicle photoelectric localization method used for moving objects, this paper proposes an improved two-unmannedaerialvehicleintersection localization system based on airborne optoelectronic platforms by using the crossed-angle localization method of photoelectric theodolites for reference. This paper introduces the makeup and operating principle of intersection localization system, creates auxiliary coordinate systems, transforms the light of sight vectorsinto homogeneous coordinates, and establishes a two-unmannedaerialvehicle intersection localization model. In this paper, the influence of the positional relationship between unmannedaerialvehicles and the target on localization accuracy has been studied in details to obtain an ideal measuring position and the optimal localization positionwhere the optimal intersection angle is 69.984°. Given the optimal position, the localization root-mean-square error will be 38.043 4 m when the target is 20 km away fromunmannedaerialvehicle baselines. Finally, the influence of Kalman filtering on localization results is analyzed, and an appropriate filtering model is established to reduce the localization root-mean-square error to 13.584 2 m.
参考文献

[1] 邵校,陶建武. 基于单目视觉的静止目标定位方法[J]. 光子学报, 2016, 45(10): 1012003.

    SHAO Xiao, TAO Jian-wu. Location method of static object based on monocular vision[J]. Acta Photonica Sinica, 2016, 45(10): 1012003.

[2] 邵慧.无人机高精度目标定位技术[D].南京:南京航空航天大学, 2014.

    SHAO Hui. Research on high precision target localication technology in UAV[D]. Nanjing: Nanjing University of Aeronautice and Astronautics, 2014.

[3] 樊邦奎,段连飞,赵炳爱,等.无人机侦察目标定位技术[M].北京:国防工业出版社,2014.

[4] HOSSEINPOOR H R, SAMDZADEGAN F, DADRASJAVAN F. Pricise target geolocation and tracking based on UAV video imagery[J].Nternational Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2016, XLI-B6: 243-249

[5] GIANPAOLO C, MARIA H, PIOTR R, et al. High accuracy ground target geo-location using autonomous micro aerial vehicle platforms[C]. In Proceedings of AIAA Guidance, Navigation and Control Conference and Exhibit. Honolulu, Hawaii, America. 2008.

[6] FREW E W. Sensitivity of cooperative target geolocalization to orbit coordination[J]. Journal of Guidance,control,and Dynamics, 2008, 1(4): 1028-1040.

[7] 周前飞,刘晶红,熊文卓,等.机载光电成像平台的多目标自助定位系统研究[J].光学学报, 2015,35(1):0112005.

    ZHOU Qian-fei, LIU Jing-hong, XIONG Wen-zhuo, et al. Multi-target self-determination orientation system based on airborne photoelectric imaging platform[J]. Acta Optica Sinica, 2015, 35(1): 0112005.

[8] XU Cheng, HUANG Da-qiang, HAN Wei. High precision passive target localization based on airborne electro-optical payload[C]. In Proceedings of 14th International Conference on Optical Communications and Networks(ICOCN).Nanjing,China,2015.pp.1-3.

[9] JAMES A R, BRIAN R G, GREGORY L S, el al. Vision-based target geolocation and optimal surveillance on an unmanned aerial vehicle[C]. In Proceedings of AIAA Guidance, Navigation, and Control Conference,Honolulu, Hawaii,America,2008.

[10] RAJNIKANT S, JOSIAH Y, HYUKSEONG K,et al. Vision based mobile target geo-localization and target discrimination using bayes detection theory[J]. Distributed Autonomous Robotic Systems, 2014, 104: 59-71.

[11] HU Tian-xiang. Double UAV cooperative localization and remote location error analysis[C]. In Proceedings of 5th International Conference on Advanced Design and Manufacturing Engineering.Shenzhen,China, 2015: 76-81.

[12] 张同双,傅敏辉,钟德安,等.基于MLE算法的海上角度交会测量方法及其精度分析[J].电讯技术,2013, 53(8): 1033-1038.

    ZHANG Tong-shuang, FU Min-hui, ZHONG De-an, et al. Marine angle intersection method based on MLE algorithm and its precision analysis[J]. Telecommunication Engineering, 2013, 53(8): 1033-1038.

[13] 王家骐,金光,颜昌翔.机载光电跟踪测量设备的目标定位误差分析[J].光学精密工程, 2005,13(2): 105-116.

    WANG Jia-qi, JIN Guang, YAN Chang-xiang. Orientation error analysis of airborne opto-electric tracking and measuring device[J].Optics and precision Engineering, 2005, 13(2): 105-116.

[14] 管坐辇,王乃祥,徐宁. 基于蒙特卡罗模拟的机载光电平台测角精度分析[J].电子测量与仪器学报, 2015,29(3):447-453.

    GUAN Zuo-nian, WANG Nai-xiang, XU Ning. Analysis of angle accuracy of airborne photoelectric platform based on Monte Carlo simulation[J]. Journal of Electronic Measurement and Instrumentation, 2015, 29(3): 447-453.

[15] 黄小平, 王岩. 卡尔曼滤波原理及应用[M]. 北京: 电子工业出版社, 2015.

左羽佳, 白冠冰, 刘晶红, 宋悦铭, 孙明超. 基于机载光电平台的双机交会定位方法[J]. 光子学报, 2017, 46(9): 0912003. ZUO Yu-jia, BAI Guan-bing, LIU Jing-hong, SONG Yue-ming, SUN Ming-chao. Two-UAV Intersection Localization Based on the Airborne Optoelectronic Platform[J]. ACTA PHOTONICA SINICA, 2017, 46(9): 0912003.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!