红外与毫米波学报, 2018, 37 (1): 15, 网络出版: 2018-03-14  

fT为350 GHz的InAlN/GaN HFET高频器件研究

High-frequency InAlN/GaN HFET with an fT of 350 GHz
作者单位
1 信息显示与可视化国际合作联合实验室,电子科学与工程学院,东南大学,江苏 南京 210096
2 河北半导体研究所,河北 石家庄 050051
3 专用集成电路国家级重点实验室,河北 石家庄 050051
摘要
采用再生长n+ GaN非合金欧姆接触工艺研制了具有高电流增益截止频率(fT)的InAlN/GaN异质结场效应晶体管 (HFETs),器件尺寸得到有效缩小,源漏间距减小至600 nm.通过优化干法刻蚀和n+ GaN外延工艺,欧姆接触总电阻值达到0.16 Ω·mm,该值为目前金属有机化学气相沉积(MOCVD)方法制备的最低值.采用自对准电子束曝光工艺实现34 nm直栅.器件尺寸的缩小以及欧姆接触的改善,器件电学特性,尤其是射频特性得到大幅提升.器件的开态电阻(Ron)仅为0.41 Ω·mm,栅压1 V下,漏源饱和电流达到2.14 A/mm.此外,器件的电流增益截止频率(fT)达到350 GHz,该值为目前GaN基HFET器件国内报道最高值.
Abstract
Scaled InAlN/GaN heterostructure field-effect transistors (HFETs) with high unity current gain cut-off frequency (fT) were realized by employing nonalloyed regrown n+-GaN Ohmic contacts, in which the source-to-drain distance (Lsd) was scaled to 600 nm. By processing optimization of dry etching and n+-GaN regrowth, a low total Ohmic resistance of 0.16 Ω·mm is obtained, which is a recorded value regrown by metal organic chemical vapor deposition (MOCVD). A 34 nm rectangular gate was fabricated by self-aligned-gate technology. The electrical characteristics of the devices, especially for the RF characteristics, were improved greatly after the reduction of ohmic resistance and gate length. The fabricated InAlN/GaN HFETs show a low on resistance (Ron) of 041 Ω·mm and a high drain saturation current density of 2.14 A/mm at Vgs=1 V. Most of all, the device shows a high fT of 350 GHz, which is a recorded result reported for GaN-based HFETs in domestic.
参考文献

[1] Brown A, Brown K, Chen J, et al. W-band GaN power amplifier MMICs[C]. IEEE MTT-S International, 2011, Baltimore, MD: 1-4.

[2] Chung J W, Hoke W E, Chumbes E M, et al. Advanced gate technologies for state-of-the-art fT in AlGaN/GaN HEMTs[C]. IEDM Tech. Dig, 2010, 30, 1-4.

[3] Chung J W, Hoke W E, Chumbes E M, et al. AlGaNGaN HEMT with 300 GHz fmax[J]. IEEE Electron Device Letters, 2010, 31(3): 195-197.

[4] Kuzmík J. Power electronics on InAlN/(In)GaN: Prospect for a record performance[J]. IEEE Electron Device Letters, 2001, 22: 510-512.

[5] Shinohara K, Regan D C, Tang Y, et al. Scaling of GaN HEMTs and Schottky diodes for submillimeter-wave MMIC applications[J]. IEEE Transaction on Electron Devices, 2013, 60(10): 2982-2996.

[6] Wang Y G, Lv Y J, Song X B, et al. Reliability assessment of InAlN/GaN HFETs with lifetime 8.9 106 hours [J]. IEEE Electron Device Letters, 2017, 38(5): 604-606.

[7] Sun H, Alt A R, Benedickter H, Feltin E, Carlin J F, et al. 205 GHz (Al,In)N/GaN HEMTs [J]. IEEE Electron Device Letters, 2010, 31(9):957-959.

[8] Lee D S, Chung J W, Wang H, et al. 245 GHz InAlN/GaN HEMTs with oxygen plasma treatment [J]. IEEE Electron Device Letters, 2011, 32(6): 755-757.

[9] Lee D S, Gao X, Guo S, et al. 300 GHz InAlN/GaN HEMTs with InGaN back barrier [J]. IEEE Electron Device Letters, 2011, 32(11):1525-1527.

[10] Yue Y Z, Hu Z Y, Guo J, et al. Ultrascaled InAlN/GaN High Electron Mobility Transistors with Cutoff Frequency of 400 GHz [J]. Japanese Journal of Applied Physics, 2013, 52(8): 279-287.

[11] Lv Y J, Feng Z H, Zhang Z R, et al. 60 nm T-shaped-gate InAlN/GaN HFETs with fT&fmax of 170&210 GHz [J]. Journal of Infrared Millim. Waves, 2016, 35(6): 641-645.

[12] Yin J Y, Lv Y J, Song X B, et al. fT=220 GHz InAlN/GaN HFETs with regrown ohmic contacts [J]. Journal of Infrared Millim. Waves, 2017, 36(1): 6-9.

[13] Guo J, Li G W, Faria F, et al. MBE-Regrown Ohmics in InAlN HEMTs With a Regrowth Interface Resistance of 0.05 Ω·mm [J]. IEEE Electron Device Letters, 2012, 33(4): 525-527.

[14] Schuette M L, Ketterson A, Song B, et al. Gate-Recessed Integrated E/D GaN HEMT Technology With fT/fmax>300 GHz [J]. IEEE Electron Device Letters, 2013, 34(6): 741-743.

[15] Brown D F, A Williams, Shinohara K, et al. W-band power performance of AlGaN/GaN DHFETs with regrown n+ GaN ohmic contacts by MBE[C]. IEEE Electron Devices Meeting (IEDM), 2011, Washington, DC: 461-464.

[16] Wu Y F, Kapolnek D, Kozodoy P, et al. AlGaN/GaN MODFETs with low ohmic contact resistances by source/drain n+ re-growth [C]. Proceedings of the IEEE Twenty-Fourth International Symposium on Compound Semiconductors, 1997, San Diego, CA: 431-434.

[17] Guo H Y, Lv Y J, Gu G D, et al. High-Frequency AlGaN/GaN High-Electron-Mobility Transistors with Regrown Ohmic Contacts by Metal-Organic Chemical Vapor Deposition [J]. Chinese Physics Letters, 2015, 32(11): 118501-1-118501-3.

[18] Huang T D, Zhu X L, Lau K M, Enhancement-Mode AlN/GaN MOSHFETs on Si Substrate With Regrown Source/Drain by MOCVD [J]. IEEE Electron Device Letters, 2012, 33(8):1123-1125.

[19] Chen G, Kumar V, Schwindt R S, et al. Low Gate Bias Model Extraction Technique for AlGaN/GaN HEMTs [J]. IEEE Trans Micro Theory Tech, 2006, 54:2949-2953.

付兴昌, 吕元杰, 张力江, 张彤, 李献杰, 宋旭波, 张志荣, 房玉龙, 冯志红. fT为350 GHz的InAlN/GaN HFET高频器件研究[J]. 红外与毫米波学报, 2018, 37(1): 15. FU Xing-Chang, LV Yuan-Jie, ZHANG Li-Jiang, ZHANG Tong, LI Xian-Jie, SONG Xu-Bo, ZHANG Zhi-Rong, FANG Yu-Long, FENG Zhi-Hong. High-frequency InAlN/GaN HFET with an fT of 350 GHz[J]. Journal of Infrared and Millimeter Waves, 2018, 37(1): 15.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!