红外技术, 2018, 40 (3): 201, 网络出版: 2018-04-09   

InGaAs/InP红外雪崩光电探测器的研究现状与进展

Recent Progress in InGaAs/InP Infrared Avalanche Photodetectors
作者单位
中国科学院上海技术物理研究所, 红外物理国家重点实验室, 上海 200083
摘要
近年来, 量子卫星通信、主动成像等先进技术的应用取得了较大的进展, InGaAs/InP雪崩光电探测器作为信息接收端的核心器件起到了至关重要的作用。本文系统介绍了 InGaAs/InP雪崩光电探测器的工作原理, 分析了器件结构设计对暗电流特性的影响, 对盖格模式下多种单光子探测电路进行了综述, 同时对新型金属-绝缘体-金属结构设计的研究进展进行了介绍和展望。
Abstract
In recent years, quantum satellite communication and active imaging, where InGaAs/InP infrared avalanche photodetectors play a key role in single-photon detection, have progressed considerably. This review provides a detailed introduction to the basic principle of InGaAs/InP infrared avalanche photodetectors. The impact of the device structure characteristics on the dark current avalanche mechanism is summarized. Different circuits related to single-photon detection technology, running in Geiger mode, are presented. Several novel metal-insulator-metal structures are introduced for enhancing the quantum efficiency of InGaAs/InP infrared avalanche photodetectors, and their prospects are discussed.
参考文献

[1] Joseph C. Passive infrared detection: theory and application[M]. Kluwer academic publishers, 1999: 225.

[2] Jiang X, Itzler M A, Ben Michael R, et al. InGaAsP-InP Avalanche Photodiodes for Single Photon Detection[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(4):895-905.

[3] WANG Jianlu, FANG Heihai, WANG Xudong, et al. Recent Progress on Localized Field Enhanced Two-dimensional Material Photodetectors from Ultraviolet-Visible to Infrared[J]. Small, 2017, 13(35): 1700894.

[4] Lacaita A, Francese P A, Zappa F, et al. Single-photon detection beyond 1 μm: performance of commercially available germanium photodiodes[J]. Applied Optics, 1994, 33(30): 6902-6918.

[5] Kang Y, Mages P, Clawson A R, et al. Fused InGaAs-Si avalanche photodiodes with low-noise performances[J]. IEEE Photonics Technology Letters, 2002, 14(11): 1593-1595.

[6] QING Li, BAI JIE, LV Yanqiu, et al. Analysis of ultraviolet and infrared dual-color focal-plane arrays detector based on Pt/CdS and InSb junctions[J]. J. Infrared Millim. Waves, 2017, 36(4): 385-388.

[7] GONG F, FANG H H, WANG P, et al. Visible to near-infrared photodetectors based on MoS2 vertical Schottky junctions[J]. Nanotechnology, 2017, 19(3): 48.

[8] WANG Peng, LIU Shanshan, LUO Wenjin, et al. Arrayed Van Der Waals Broadband Detectors for Dual-Band Detection[J]. Advanced Materials, 2017, 29(16): 1604439.

[9] WU B H, XIA G Q, LI Z H, et al. Sulphur passivation of the InGaAsSb/GaSb photodiodes[J]. Applied Physics Letters, 2002, 80(7): 1303-1305.

[10] WANG X D, HU W D, CHEN X S, et al. Dark current simulation of InP/In0.53Ga0.47As/InP p-i-n photodiode[J]. Optical & Quantum Electronics, 2008, 40(14-15): 1261-1266.

[11] 郝国强. InGaAs红外探测器器件与物理研究 [D].上海: 中科院上海微系统与信息技术研究所, 2006.

    HAO Guoqiang. Study on Physics and Devices of InGaAs Infrared Detectors, Shanghai: Shanghai Institute of Microsystem and Information Technology,2006 )

[12] Porod W, Ferry D K. Modification of the virtual-crystal approximation for ternary III-V compounds[J]. Physical Review B Condensed Matter, 1983, 27(4): 2587-2589.

[13] Itzler M A, Patel K, Jiang X, et al. Comparison of 32×128 and 32×32 Geiger-mode APD FPAs for single photon 3D LADAR imaging[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2011, 8033(3): 80330G-1-80330G-12.

[14] Verghese S, Donnelly J P, Duerr E K, et al. Arrays of InP-based Avalanche Photodiodes for Photon Counting[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(4): 870-886.

[15] Isoshima T, Isojima Y, Hakomori K, et al. Ultrahigh sensitivity single‐photon detector using a Si avalanche photodiode for the measurement of ultra weak biochemilumine scence[J]. Review of Scientific Instruments, 1995, 66(4): 2922-2926.

[16] LIAO S K, CAI W Q, LIU W Y, et al. Satellite-to-ground quantum key distribution[J]. Nature, 2017, 549(7670): 43-47.

[17] REN J G, XU P, YONG H L, et al. Ground-to-satellite quantum teleportation[J]. Nature, 2017, 549(7670): 70-73.

[18] Mcintyre R J. Multiplication noise in uniform avalanche diodes[J]. IEEE Transactions on Electron Devices, 1966, 13(1):164-168.

[19] Cook L W, Bulman G E, Stillman G E. Electron and hole impact ionization coefficients in InP determined by photo multiplication measurements[J]. Applied Physics Letters, 1982, 40(7): 589-591.

[20] Stillman G E, Wolfe C M. Avalanche photodiodes, in Semiconductors and Semimetals[M]. New York:Academic,1977: 291-393.

[21] HU W D, CHEN X S, YIN F, et al. Analysis of temperature dependence of dark current mechanisms for long-wavelength HgCdTe photovoltaic infrared detectors[J]. Journal of Applied Physics, 2009, 105(10): 104502-104502-8.

[22] Forrest S R, Leheny R F, Nahory R E, et al. In0.53Ga0.47As photodiodes with dark current limited by generation-recombination and tunneling[J]. Applied Physics Letters, 1980, 37(3): 322-325.

[23] 尼曼. 半导体物理与器件 [M].北京: 电子工业出版社, 2013: 139.

    Neamen. Semiconductor physics and devices[M]. Beijing: Publishing House of Electronics Industry, 2013:139.

[24] ZENG Q Y, WANG W J, HU W D, et al. Numerical analysis of multiplication layer on dark current for InGaAs/InP single photon avalanche diodes[J]. Optical & Quantum Electronics, 2014, 46(10): 1203-1208.

[25] XU J, CHEN X, WANG W, et al. Extracting dark current components and characteristics parameters for InGaAs/InP avalanche photodiodes[J]. Infrared Physics & Technology, 2016, 76: 468-473.

[26] 曾巧玉. InGaAs/InP单光子雪崩光电二极管的制备及研究 [D].上海: 中科院上海技术物理研究所, 2014.

    ZENG Qiaoyu. Fabrication and Study of InGaAs/InPAvalanche photodiodes(APDs)[D]. Shanghai: Shanghai institute of technical physics, Chinese Academy of Sciences, 2014.

[27] 梁焰. 基于 InGaAs/InPAPD高速单光子探测方法及应用 [D].上海: 华东师范大学, 2014.

    LIANG Yan. High-speed single-photon detection based InGaAs/InP APD and its applications[D]. Shanghai: East China Normal University, 2014.

[28] 白郭敏, 梁焰, 曾和平. 基于国产的 InGaAs/InPAPD的高速单光子探测[J].电子测量技术, 2017, 40: 6.

    BAI Guomin, LIANG Yan, ZENG Heping, High-speed single-photon detection based on domestic InGaAs/InP APD[J]. Electronic Measurement Technology, 2017, 40: 6.

[29] LIANG YAN, JIAN Yi, CHEN Xiuliang, et al. Room-Temperature Single-Photon Detector Based on InGaAs/InP Avalanche Photodiode With Multichannel Counting Ability[J]. IEEE Photonics Technology Letters, 2010, 23(2):115-117.

[30] WEN J, WANG W J, LI N, et al. Light enhancement by metal-insulator-metal plasmonic focusing cavity[J]. Optical & Quantum Electronics, 2016, 48(2):150.

[31] WEN J, WANG W J, LI N, et al. Plasmonic optical convergence microcavity based on the metal-insulator-metal microstructure[J]. Applied Physics Letters, 2017, 110(23): 187901-62.

胡伟达, 李庆, 温洁, 王文娟, 陈效双, 陆卫. InGaAs/InP红外雪崩光电探测器的研究现状与进展[J]. 红外技术, 2018, 40(3): 201. HU Weida, LI Qing, WEN Jie, WANG Wenjuan, CHEN Xiaoshuang, LU Wei. Recent Progress in InGaAs/InP Infrared Avalanche Photodetectors[J]. Infrared Technology, 2018, 40(3): 201.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!