光子学报, 2018, 47 (9): 0916005, 网络出版: 2018-09-15  

磁控溅射结合脉冲激光制备钛掺杂硅薄膜的研究

Study of Titanium-doped Silicon Films Prepared by Magnetron Sputtering and Nanosecond Pulsed Laser
作者单位
西南科技大学 理学院 极端条件物质特性联合实验室, 四川 绵阳 621000
摘要
发展了一种改进的新型超掺杂工艺, 通过真空磁控溅射多层镀膜后结合532 nm波长可见纳秒脉冲激光熔融处理, 进行超掺杂钛的硅薄膜材料的制备, 并对材料的超掺杂层的性质和红外吸收性能进行了探究.结果表明, 硅膜层中掺杂的钛原子的百分比浓度超过1%左右, 对应钛原子浓度约为5×1020 cm-3左右, 超过钛在硅中形成超掺杂所对应的原子浓度.钛超掺杂层的厚度超过200 nm左右, 相对传统工艺具有明显提升, 并且钛原子的浓度变化范围不超过20%, 分布比较均匀.小角度X射线衍射测试表明经过可见脉冲激光熔融处理后的硅薄膜层材料结晶度为25%左右, 呈多晶结构.同时红外吸收谱测试表明, 样品的钛掺杂硅膜层在大于1 100 nm波长的区域具有很高的红外吸收效果, 最高的红外吸收系数达到1.2×104 cm-1, 远超过单晶硅材料.具有比较明显的亚能带吸收的特征, 呈现出Ec-0.26 eV的掺杂能级.霍尔效应测试表明硅膜层具有较高的载流子浓度, 超过了8×1018 cm-3.
Abstract
An improved hyper-doping process has been developed which combines the vacuum magnetron sputtering coating and the 532 nm wavelength visible nanosecond pulse laser melting to prepare the silicon thin films of titanium doping. The characteristics of hyper-doped layer and the infrared light absorption properties of silicon thin film were studied. The X-ray photoelectron spectroscopy shows that the titanium concentration of doping layer of sample is more than 1% (the corresponding titanium atom concentration is about 5×1020 cm-3), higher than the hyper-doping concentration of titanium in silicon. And the thickness of hyper-doping layer is more than 200 nm which improves obviously compared with traditional technology. The variable range of the concentration of titanium atoms is not more than 20%, and the atom distribution is more homogeneous. The glancing incidence X-ray diffraction pattern shows that the crystallinity of the silicon thin film layer is polycrystalline structure and about 25% around after pulsed laser melting. At the same time, the infrared light absorption measurement shows that the hyper-doping silicon thin film has high infrared absorptivity in wavelength larger than 1 100 nm. The highest infrared light absorption coefficient of sample is almost to 1.2×104 cm-1, which is far more than that of monocrystalline silicon. The material has obvious characteristics of sub-band absorption and shows a donor impurity energy level of the Ec-0.26 eV. The Hall effect measurement shows that the thin film layer has high carrier concentration, over 8×1018 cm-3. The Hall effect measurement shows that the thin film layer has high carrier concentration, over 8×1018 cm-3.
参考文献

[1] GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 49)[J]. Progress in Photovoltaics Research & Applications, 2017, 25(7): 905-913.

[2] CSUTAK S M, SCHAUB J D, WU W E, et al. High-speed monolithically integrated silicon photoreceivers fabricated in 130-nm CMOS technology[J]. Journal of Lightwave Technology, 2002, 20(9): 1724-1729.

[3] GREEN M A. Third generation photovoltaics: advanced solar energy conversion[J]. Physics Today, 2006, 57(12): 71-72.

[4] LUQUE A, MARTI A, STANLEY C. Understanding intermediate-band solar cells[J]. Nature Photonics, 2012, 6(3): 146-152.

[5] LUQUE A, MARTI A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels[J]. Physical Review Letters, 1997, 78(26): 5014-5017.

[6] WANG Ke-fan, SHAO He-zhu, LIU Kong, et al. Possible atomic structures responsible for the sub-bandgap absorption of chalcogen-hyperdoped silicon[J]. Applied Physics Letters, 2015, 107(11): 9901-347.

[7] GARCIAHEMME E, GARCIAHERNANSANZ R, OLEA J, et al. Room-temperature operation of a titanium supersaturated silicon-based infrared photodetector[J]. Applied Physics Letters, 2014, 104(21): 211105-211105-5.

[8] LI Si-yu, WU Zhi-ming, DU Ling-yan, et al. Research on photoelectric characteristics of (S, Se) co-doped silicon fabricated by femtosecond-laser irradiation[J]. Journal of Materials Science Materials in Electronics, 2018(1): 1-6.

[9] SHEEHY M A, TULL B R, FRIEND C M, et al. Chalcogen doping of silicon via intense femtosecond-laser irradiation[J]. Materials Science & Engineering B, 2007, 137(1): 289-294.

[10] ZHANG Ting, WASEEM A, LIU Bo-han, et al. Broadband infrared response of sulfur hyperdoped silicon under femtosecond laser irradiation[J]. Materials Letters, 2017, 196: 16-19.

[11] SULLIVAN J T, SIMMONS C B, BUONASSISI T, et al. Targeted search for effective intermediate band solar cell materials[J]. IEEE Journal of Photovoltaics, 2014, 5(1): 212-218.

[12] SHER M J, MAZUR E. Intermediate band conduction in femtosecond-laser hyperdoped silicon[J]. Applied Physics Letters, 2014, 105(3): 1850-130.

[13] LIMAYE M V, CHEN S C, LEE C Y, et al. Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques.[J]. Scientific Reports, 2015, 5: 11466.

[14] LI Xiao-hong, CHANG Li-yang, QIU Rong, et al. Microstructuring and doping of silicon with nanosecond laser pulses[J]. Applied Surface Science, 2012, 258(20): 8002-8007.

[15] HU Shao-xu, HAN Pei-de, GAO Li-peng, et al. The effects of femtosecond laser irradiation and thermal annealing on the optoelectronic properties of silicon supersaturated with sulfur[J]. Chinese Physics Letters, 2012, 29(4): 046101-379.

[16] YU Xin-yue, ZHAO Ji-hong, LI Chun-hao,et al. Gold-hyperdoped black silicon with high IR absorption by femtosecond laser irradiation[J]. IEEE Transactions on Nanotechnology, 2017, 16(3): 502-506.

[17] UMEZU I, NAITO M, KAWABE D,et al. Hyperdoping of silicon with deep-level impurities by pulsed YAG laser melting[J]. Applied Physics A, 2014, 117(1): 155-159.

[18] BUCHER K, BRUNS J, WAGEMANN H G. Absorption coefficient of silicon: An assessment of measurements and the simulation of temperature variation[J]. Journal of Applied Physics, 1994, 75(2): 1127-1132.

[19] TAUC J, GRIGOROVICI R, VANCU A. Optical properties and electronic structure of amorphous germanium[J]. Physica Status Solidi, 1966, 15(2): 627–637.

[20] CHEN J W, MILNES A G, ROHATGI A. Titanium in silicon as a deep level impurity[J]. Solid-State Electronics, 1979, 22(9): 801-808.

[21] OKUYAMA M, MATSUNAGA N, CHEN J W, et al. Photoionization cross-sections and energy levels of gold, iron, platinum, silver, and titanium in silicon[J]. Journal of Electronic Materials, 1979, 8(4): 501-515.

王凯, 李晓红, 张延彬, 温才, 刘德雄. 磁控溅射结合脉冲激光制备钛掺杂硅薄膜的研究[J]. 光子学报, 2018, 47(9): 0916005. WANG Kai, LI Xiao-hong, ZHANG Yan-bing, WEN Cai, LIU De-xiong. Study of Titanium-doped Silicon Films Prepared by Magnetron Sputtering and Nanosecond Pulsed Laser[J]. ACTA PHOTONICA SINICA, 2018, 47(9): 0916005.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!