杨科 1,*薛媛元 1贾波 2白宣庆 1[ ... ]陈娟 1
作者单位
摘要
1 西安应用光学研究所,陕西 西安 710065
2 陆装西安军代局驻西安地区第八军代室,陕西 西安 710065
损伤阈值测量装置是强激光技术的重要技术指标,主要用于强激光光学元件的研制和测试,而同步触发模块作为模块之间时序的控制器,是研制损伤阈值测量装置的关键技术之一。介绍了一种用于激光损伤阈值测量装置的同步触发模块及方法。设计了基于现场可编程门阵列(field programmable gate array,FPGA)为主控芯片的硬件方案,通过上位机操控软件设置同步触发参数,来控制各路输出同步信号的宽度和各路信号之间的时序,可极大提高同步触发的精度和效率。通过实验验证,同步脉冲信号之间的调节精度为2 ns,同步脉冲信号的最小宽度为10 ns,满足激光损伤阈值测量装置的要求。
损伤阈值 同步触发 FPGA damage threshold synchronous trigger field programmable gate array 
应用光学
2023, 44(6): 1228
作者单位
摘要
西安应用光学研究所,陕西 西安 710065
设计并搭建了一套1 064 nm、532 nm的双波长光学元件激光损伤阈值自动测量装置,用于光学元件膜层激光损伤阈值的自动化检测。装置主要由脉冲激光光源、光束参数诊断组件、损伤在线诊断组件、待测件扫描运动平台和控制系统组成。整个测量装置和测量过程由基于Labview编制的计算机综合测量软件自动控制,可实现损伤阈值在0.1 J/cm2~100 J/cm2能量密度范围内的自动测量,并利用该装置对1 064 nm增透膜和铝反射膜样品进行了测量,得到损伤阈值分别为27.09 J/cm2和3.21 J/cm2,相对不确定度分别为3.91%和5.61%。
自动测量 激光损伤阈值 1-on-1 能量密度 相对测量不确定度 automatic measurement LIDT 1-on-1 energy density relative measurement uncertainty 
应用光学
2023, 44(4): 852
作者单位
摘要
1 西安应用光学研究所,陕西 西安 710065
2 中国计量大学 光学与电子科技学院,浙江 杭州 310018
在大功率激光系统的评价与分析中,激光器的光束品质是系统光束品质的决定性因素,也是激光器验收、鉴定的重要指标,其中束散角是判别激光光束质量的重要参数。本系统测试激光波长的范围比较宽,一般在0.532 μm~10.6 μm之间,没有合适的探测器能够覆盖整个波段,所以采用了一种新的方法来解决宽波段束散角的测量问题。选用CCD成像和扫描狭缝相结合的方法来实现宽波段激光光束束散角的测量,可见光和近红外波段(0.532 μm~1.2 μm)激光光束采用CCD法测量激光束散角,中红外波段(1.2 μm~10.6 μm)激光光束采用扫描狭缝法测量激光束散角。两种方法的结合可以较为精确地测量出不同波段的激光束散角。
大功率激光 光束品质 激光束散角 扫描狭缝 CCD成像 high-power laser beam quality laser beam divergence angle scanning slit CCD imaging 
应用光学
2023, 44(2): 450
作者单位
摘要
1 西安应用光学研究所 国防科技工业光学一级计量站,陕西 西安 710065
2 中国计量大学 光学与电子科技学院, 浙江 杭州 310018
为测量高能激光传输系统中大口径高反射率光学元件的反射率,设计了一种大口径光学元件二维扫描的精密测量系统。介绍了该系统的结构及其工作原理,分析了影响系统测量精度的因素,从理论上分析了扫描系统的系统误差对测量精度的影响,结果表明在垂直于光束传播方向上,水平偏差在0.29 mm时,测量误差在10?6量级;腔长的变化量较小时,可通过对衰荡腔腔镜的调节,实现对旋转轴偏差的补偿及对系统的精细调节。通过拟合处理光强与时间的数据得到对应的一次指数函数拟合曲线,并通过计算得到衰荡时间和反射率,经过对比分析可知,该误差分析方法能比较有效地测量腔镜的反射率,并能减小实验数据本身带来的误差。
光学测量 超高反射率 光腔衰荡 测量精度 大口径 optical measurement ultra-high reflectivity optical cavity ring-down measurement accuracy large aperture 
应用光学
2023, 44(2): 380
赵利强 1孙振山 1,2于东钰 3杨宏 2[ ... ]孙青 2,*
作者单位
摘要
1 北京化工大学 信息科学与技术学院,北京 100029
2 中国计量科学研究院 光学与激光计量科学研究所,北京 100029
3 西安应用光学研究所 国防科技工业光学一级计量站,陕西 西安 710065
测量重复性是光压测量装置的最大不确定度分量,直接影响测量结果的准确性。为了在高功率激光测量过程中提高功率测量的准确度,搭建了基于光压的高功率激光测量装置,进行了质量测量重复性实验和激光功率测量重复性实验,对两个实验的结果进行了比较分析。实验结果显示,光压测量装置的测量重复性随被测质量和被测功率的增大而逐渐降低,表明光压方法在测量高功率激光时更具优势。在激光功率测量重复性实验中,由于避免了偏载和气流扰动的影响,因此激光功率测量重复性优于根据等效质量计算的测量重复性。研究结果对后续进一步提高光压方法的测量准确度具有指导意义。
高功率激光 光压 测量重复性 质量 high power laser light pressure measurement repeatability mass 
中国光学
2023, 16(2): 382
作者单位
摘要
1西安应用光学研究所,陕西 西安 710065
大功率激光功率测量常用量热法,但溯源复杂。介绍了具有较高测量精度的基于光压原理的大功率激光功率测量方法,设计了利用1/105精度天平大功率激光测量实验,测试了基于GaAs半导体材料制作的反射镜的反射率及损伤阈值,确定了基于GaAs半导体材料反射镜的相关性能。得到了普通实验室条件下的功率测量重复性及线性,验证了1/105精度天平用于大功率激光测量的可行性。通过实验结果结合理论计算,得出利用1/105精度天平的光压测量功率的测量上限可以达到3×104 W以上。
应用光学
2022, 43(4): 798
作者单位
摘要
1 西安应用光学研究所,陕西 西安 710065
2 陆军装备部驻某地区航空军代局,河南 洛阳 471000
简述了高能高功率激光技术的发展现状及其计量测试需求,介绍了近年来开展的高能高功率激光参数计量测试研究取得的进展,给出激光功率能量、时域参数和空域参数等测量原理和方法。指出了高能高功率激光参数测量面临的主要问题及需要突破的关键技术,包括大动态范围功率能量“无畸变”衰减技术、激光功率能量现场测量技术和功率能量计溯源及后向散射补偿方法等。
功率能量 时域参数 空域参数 测量 power and energy time-domain parameters space-domain parameters measurement 
应用光学
2020, 41(4): 645
作者单位
摘要
西安应用光学研究所,陕西 西安 710065
测量高能激光远场辐照度分布是评估激光**系统性能指标的一个有效方法。对国内外现有的几种高能激光远场辐照度分布测量方法进行了比较和归纳,对各种技术的优点和缺点作了深入的分析,并对靶面抗损伤技术、取样衰减技术和功率密度定标技术3项关键技术研究进展进行了介绍,在该基础上阐述了高能激光能量远场辐照度分布直接测量技术的发展趋势。
高能激光 辐照度分布 抗损伤 取样衰减 发展趋势 high energy laser irradiance distribution anti-damage sampling attenuation development trend 
应用光学
2020, 41(4): 675
作者单位
摘要
西安应用光学研究所, 陕西 西安710065
飞秒激光在激光核聚变、卫星精密测距、激光微加工等领域具有重要的应用前景, 同时也是产生太赫兹波的主要泵浦源。介绍了国内外飞秒激光脉冲宽度和脉冲波形的测试方法, 比较了自相关法、频率分辨光学快门法、光谱相位相干直接电场重构法的优缺点。自相关法具有脉宽测量范围广、结构简单等特点, 但不具备脉冲波形测试能力。光谱相位相干直接电场重构法对待测激光光束质量要求较高,不适合大量程范围激光脉宽快速测量。为满足10 fs~5 ps大量程范围超短激光脉冲宽度和脉冲波形的测试需求, 采用自相关法及二次谐波频率分辨光学开关法研制飞秒激光脉冲宽度和脉冲波形测试仪, 时间分辨率优于2 fs。
飞秒激光 脉冲宽度 脉冲波形 测试 femto-second laser pulse width pulse waveform measurement 
应用光学
2019, 40(2): 291
作者单位
摘要
西安应用光学研究所, 陕西 西安 710065
介绍了黑体温度测量的溯源途径及方法, 分析了探测器绝对光谱响应、透镜透过率及面积效应等对黑体温度测量的影响, 试验测量结果表明黑体温度可以通过标准探测器进行量值传递并溯源。与传统溯源方法相比, 利用标准探测器进行量值传递测量精度可提升一个数量级, 达到0.8%的水平。
辐射温度 面积效应 绝对光谱响应 透镜透过率 radiation temperature area effect absolute spectral response lens transmittance 
应用光学
2018, 39(6): 862

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!