作者单位
摘要
1 大连理工大学 高性能精密制造全国重点实验室,辽宁大连6024
2 华侨大学 制造工程研究院,福建厦门36101
钇铝石榴石(YAG)晶体是制造固体激光器的重要材料,超精密磨削是加工YAG晶体等硬脆材料零件的重要方法,研究硬脆材料加工表面的微观变形、脆塑转变机理对超精密磨削加工具有重要的指导作用。为了实现YAG晶体低损伤磨削加工,获得高质量表面,基于弹塑性接触理论和压痕断裂力学,通过分析单磨粒划擦作用下材料表面的变形过程,考虑材料的弹性回复、微观下力学性能的尺寸效应,建立了脆塑转变临界深度的预测模型,并计算得到YAG晶体的脆塑转变临界深度为66.7 nm。在此基础上,通过不同粒度砂轮超精密磨削YAG晶体试验对建立的脆塑转变临界深度预测模型进行验证,并计算不同粒度砂轮在相应工艺条件下的磨粒切深。结果表明,磨粒切深高于脆塑转变临界深度时,YAG晶体磨削表面材料以脆性方式被去除,磨削表面损伤严重;磨粒切深低于脆塑转变临界深度时,磨削表面材料以塑性方式被去除,能够获得高质量磨削表面,加工表面粗糙度达到1 nm。建立的脆塑转变临界深度预测模型能够为YAG晶体的低损伤超精密磨削加工提供理论指导。
超精密磨削 YAG晶体 纳米压痕 纳米划痕 脆塑转变 YAG crystal nano-indentation nano-scratch brittle-to-ductile transition ultra-precision grinding 
光学 精密工程
2024, 32(1): 84
作者单位
摘要
大连理工大学 高性能精密制造全国重点实验室,辽宁大连116024
针对固结磨料研磨石英晶片材料去除率难以预测的问题,提出一种基于接触力学和广义回归神经网络(GRNN)的石英晶片材料去除率模型。首先根据脆/塑材料去除机理、磨粒块与晶片微观接触简化形式,采用微积分、力平衡原理等方法,建立了理想情况下的材料去除率模型。然后采用微单元法,进行了三因素四水平正交试验,并通过GRNN分析研磨液流量、研磨液浓度、研磨盘转速与材料去除率修正系数的映射关系,进一步完善了材料去除率模型。最后为验证材料去除率模型,设定研磨盘转速为20 r/min,研磨液浓度为5 wt.%,研磨液流量为36 ml/min,仿真并测量不同研磨压强以及相对速度下,晶片材料去除率预测值与实际值。结果表明:研磨压强和相对速度的增加使晶片材料去除加快,材料去除率模型预测值与实际值变化趋势相同,模型误差为8.57%。材料去除率模型基本满足固结磨料研磨工艺中石英晶片材料去除率预测需求。
固结磨料研磨 石英晶片 材料去除率 广义回归神经网络 fixed abrasive lapping quartz wafer material removal rate generalized regression neural network 
光学 精密工程
2023, 31(16): 2362
作者单位
摘要
大连理工大学 精密与特种加工教育部重点实验室,辽宁大连116024
工件旋转法磨削是大尺寸硅片正面平整化加工和背面减薄加工的主要方法,但磨削加工不可避免地会在硅片表面/亚表面产生损伤。为了预测工件旋转法磨削硅片产生的亚表面损伤深度,优化硅片磨削工艺,根据工件旋转法磨削过程中硅片磨削表面的几何轮廓参数、硅片磨削表面的材料去除机理和压痕断裂力学理论建立了磨粒切削深度、表面粗糙度Ra和亚表面损伤深度之间的数学关系,推导出工件旋转法磨削硅片的亚表面损伤深度预测模型,并通过硅片超精密磨削试验对模型进行了验证与分析。结果表明,工件旋转法磨削硅片的亚表面损伤深度随表面粗糙度Ra的增大而增大,通过预测模型计算的磨削硅片亚表面损伤深度预测值与硅片亚表面损伤深度实测值的误差小于10%,建立的亚表面损伤深度预测模型能够为超精密磨削硅片的亚表面损伤控制和硅片高效低损伤磨削工艺的优化提供理论指导。
磨削 单晶硅片 表面粗糙度 亚表面损伤深度 grinding silicon wafers surface roughness subsurface damage depth 
光学 精密工程
2022, 30(17): 2077
作者单位
摘要
大连理工大学 精密与特种加工教育部重点实验室, 辽宁 大连 116024
为了实现单晶硅反射镜高效低损伤的超精密加工, 研究了基于工件旋转法磨削原理的单晶硅反射镜超精密磨削工艺。通过形貌检测和成份测试的方法分析了该工艺采用的超细粒度金刚石砂轮的组织结构特征, 并对单晶硅进行了超精密磨削试验, 研究了超细粒度金刚石砂轮的磨削性能。通过砂轮主轴角度与工件面形之间的数学关系实现对磨削工件面形的控制。最后, 采用超细粒度金刚石砂轮对Φ100 mm×5 mm的单晶硅反射镜进行了超精密磨削试验验证。试验结果表明, 超细粒度金刚石砂轮磨削后的单晶硅表面粗糙度Ra值小于10 nm, 亚表面损伤深度小于100 nm, 磨削后的单晶硅反射镜面形PV值从初始的8.1 μm减小到1.5 μm。由此说明采用该工艺磨削单晶硅反射镜能够高效地获得低损伤表面和高精度面形。
单晶硅反射镜 工件旋转法磨削 表面/亚表面损伤 面形控制 超细粒度金刚石砂轮 silicon reflector workpiece rotational grinding surface and subsurface damage surface profile control ultra-fine diamond wheel 
光学 精密工程
2019, 27(5): 1087
作者单位
摘要
大连理工大学 精密与特种加工教育部重点实验室, 辽宁 大连 116024
针对传统金刚石砂轮磨削硅片存在的表面/亚表面损伤问题, 研制了一种用于硅片化学机械磨削加工的新型常温固化结合剂软磨料砂轮。根据化学机械磨削加工原理和单晶硅的材料特性, 设计的软磨料砂轮以氧化铈为磨料, 二氧化硅为添加剂, 氯氧镁为结合剂。研究了软磨料砂轮的制备工艺, 分析了软磨料砂轮的微观组织结构和成分。通过测量加工硅片的表面粗糙度、表面微观形貌和表面/亚表面损伤, 进一步研究了软磨料砂轮的磨削性能。最后,与同粒度金刚石砂轮磨削和化学机械抛光(CMP)加工的硅片进行了对比分析。结果表明, 采用软磨料砂轮磨削的硅片其表面粗糙度Ra<1 nm, 亚表面损伤仅为深度<30 nm的非晶层, 远好于金刚石砂轮磨削硅片, 接近于CMP的加工水平, 实现了硅片的低损伤磨削加工。
单晶硅 软磨料砂轮 化学机械磨削 表面粗糙度 表面/亚表面损伤 monocrystalline silicon soft abrasive grinding wheel chemo-mechanical grinding surface roughness surface/subsurface damage 
光学 精密工程
2017, 25(10): 2689
作者单位
摘要
大连理工大学 精密与特种加工教育部重点实验室,辽宁 大连 116024
超声辅助磨削是一种套料芯棒加工方法,而硬脆材料在超声辅助磨削加工过程中的去除模式主要为脆性断裂,这将导致加工出的芯棒直径与砂轮内径之间存在尺寸误差。针对上述问题,通过分析超声辅助磨削加工中砂轮表面金刚石磨粒的运动轨迹,运用压痕断裂力学理论建立了超声辅助磨削芯棒的直径预测模型。该模型考虑了脆性材料断裂时产生的侧位裂纹扩展对芯棒直径的影响。通过对K9光学玻璃材料进行超声辅助套料试验对模型进行了标定和验证,接着研究了进给速度和转速对芯棒直径误差的影响规律。通过对比研究发现,模型计算结果与试验结果吻合较好,误差小于5%,验证了模型的有效性。试验结果表明,采用适当的低转速和大进给速度可以有效降低超声辅助磨削芯棒直径的尺寸误差。本文所建模型可为超声辅助磨削套料芯棒的砂轮选择提供理论指导。
硬脆材料 超声辅助磨削 直径预测 芯棒尺寸误差 hard and brittle material ultrasonic assisted grinding diameter prediction dimension error of core rod 
光学 精密工程
2017, 25(8): 2106
作者单位
摘要
1 大连理工大学 工业装备结构分析国家重点实验室, 辽宁 大连 116024
2 大连理工大学 精密与特种加工教育部重点实验室, 辽宁 大连 116024
针对大口径空间光学反射镜对轻量化的需求, 提出了基于筋板式基结构的大口径空间反射镜构型设计的拓扑优化方法。该方法利用基结构拓扑优化的思想, 将反射镜初始设计域限定为筋板式的反射镜基结构, 通过各筋板的有无描述结构构型的变化。首先, 借鉴连续体结构拓扑优化的思想, 以壳单元离散筋板结构, 以加筋板各单元的相对密度为设计变量(通过相对密度取1或0, 描述该单元所在区域的筋板是否存在), 以光轴竖直工况下镜面面形误差为设计约束, 镜体的质量最小为优化目标, 建立了镜体结构构型设计的拓扑优化模型; 然后, 以拓扑优化所得构型为基础, 提取并形成结构概念构型; 最后, 采用有限元法进行动静刚度分析与光学性能分析, 并对结构进行修正, 形成性能更好、满足要求的反射镜轻量化结构创新构型。文中的设计实例得到的反射镜镜面面形误差PV值小于λ/10, RMS值小于λ/40, 第一阶自振频率大于1 000 Hz, 轻量化率达到86.0%。得到的结果验证了本文方法的有效性。
大口径空间望远镜 反射镜 构型设计 轻量化设计 拓扑优化 筋板式基结构 large-aperture spaceborne telescope mirror configuration design lightweight design topology optimization web-skin-type ground structure 
光学 精密工程
2013, 21(7): 1803
作者单位
摘要
大连理工大学机械工程学院精密与特种加工教育部重点实验室, 辽宁 大连 116024
为提高铝合金薄板激光切割质量,对切割去除熔化物进行了收集、观察及测量研究。在Nd:YAG脉冲激光切割模式下,采用不同气熔比0.1898,0.2798,0.3708和0.6519,对0.85 mm厚的1000系铝合金薄板进行切割试验。试验通过超景深三维显微镜对收集的去除熔化物形状和尺寸进行观测研究。结果表明,去除熔化物颗粒由球形颗粒和蝌蚪形颗粒两种颗粒组成,其中球形颗粒平均尺寸在71~123 μm之间;高气熔比切割去除熔化物主要呈球形,颗粒尺寸较小,切割质量较好;低气熔比下熔化物主要是蝌蚪形,其中呈现的球形颗粒尺寸较大,切割质量较差。试验最终在辅助气压0.6 MPa高气熔比0.6519下获得了较高质量的切口。研究结果深化了铝合金激光切割的机理认识,有效提高了铝合金薄板的激光切割质量。
激光技术 激光切割 气熔比 熔化物形态 切割质量 铝合金薄板 
中国激光
2012, 39(8): 0803007
作者单位
摘要
1 北京空间机电研究所, 北京 100076
2 大连理工大学精密与非传统加工教育部重点实验室, 辽宁 大连 116024
在分析软磨料砂轮化学机械磨削(CMG)技术的基础上, 开发研制了主料分别为 Fe2O3和 MgO的杯型软磨料砂轮。利用开发的两种软磨料砂轮对 Ф150 mm的单晶硅光学表面进行纳米级精度的对比磨削加工, 优选出最佳磨削参数, 将 CMG的结果与金刚石砂轮磨削结果、化学机械抛光(CMP)结果进行对比研究, 并对加工后工件的表面与亚表面损伤进行检测分析。结果表明, MgO软磨料砂轮具有十分稳定的磨削性能, 能够获得较好的形状精度和表面亚表面质量, 采用三维表面轮廓仪和原子力显微镜测量 CMG后的工件表面分别得到 0.568 nm RMS和0.554 nm Rq的表面粗糙度, 达到了 CMP的加工效果, 角度抛光法显示 CMG后的工件亚表面损伤深度接近 0。
 软磨料 化学机械磨削 表面粗糙度 亚表面损伤 silicon soft abrasive chemo-mechanical-grinding surface roughness sub-surface damage 
光电工程
2011, 38(12): 75
作者单位
摘要
大连理工大学机械工程学院, 辽宁 大连 116024
为提高缝阵天线薄板的激光切割质量,介绍了一种基于气熔比控制的激光精密切割方法。在NdYAG脉冲激光切割系统上,试验研究了气熔比对激光切割0.5 mm 厚6063铝合金薄板质量的影响,即气熔比对切口宽度、切口表面质量、重铸层和挂渣的影响。对气熔比分别为2.62,3.06和4.11的3组试件进行检测与观察,发现提高气熔比,可减小重铸层、增大切口表面光滑区、改善激光切割质量。试验获得切口顶部宽度为0.2 mm,底部无挂渣,重铸层厚度为2.03 μm,切口表面光滑区比例占切口的40%。结果表明,研究气熔比可深化对激光加工机理的认识,有效地提高铝合金薄板激光切割质量。
激光技术 激光切割 气熔比 切割质量 
中国激光
2010, 37(10): 2648

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!