兰俊 1,2陈劲松 1,2肖志刚 3赵立新 1,2[ ... ]杨勇 1,2,*
作者单位
摘要
1 中国科学院光电技术研究所微细加工光学技术国家重点实验室, 四川 成都 610209
2 中国科学院大学, 北京 100049
3 乐山师范学院, 四川 乐山 614000
基于传统抛物面蛾眼结构(PSMS)的优良减反性能,设计出一种具有抛物线中心截面的新型苞状蛾眼结构(BSMS)。采用时域有限差分法(FDTD),通过对比PSMS在不同底面直径和高度下的平均反射率,确定了最佳底面直径为200 nm;在此基础上分析了PSMS、BSMS及圆锥形蛾眼结构(CSMS)在不同高度下的反射率大小和截面电场强度分布,并通过等效介质理论对BSMS的减反性能进行进一步理论分析。结果表明:在300~1200 nm波段和300~1000 nm高度范围内,BSMS的平均反射率均低于PSMS及CSMS;当底面直径为200 nm、高度为800 nm时,BSMS的平均反射率低至0.19%,减反效果约为PSMS的3.5倍,约为CSMS的3.8倍,具有优异且平稳的抗反射性能,为减反结构的进一步设计和优化提供了参考。
材料 苞状蛾眼结构 时域有限差分法 减反射 太阳能电池 
光学学报
2021, 41(14): 1416001
作者单位
摘要
西北核技术研究所 强脉冲辐射环境模拟与效应国家重点实验室,西安710024
开展了4N49光电耦合器不同辐照偏置条件下的辐照实验,结果表明:电流传输比的下降幅度与辐照期间的偏置条件有关,处于工作状态的光电耦合器比短路状态的总剂量效应要弱,其根源是光电耦合器的LED施加了电流,而与光敏晶体管的偏置状态关系不大;电流传输比随偏置条件的变化关系是由初级光电流决定的,而CB区光响应度是初级光电流退化的主导因素。
光电耦合器 总剂量效应 不同偏置 电流传输比 optocouplers total dose effect different bias current transfer ratio 
半导体光电
2015, 36(5): 708
肖啸 1,2,*许德富 1肖志刚 1邓迟 1[ ... ]杜惊雷 2
作者单位
摘要
1 乐山师范学院 物理与电子工程学院, 四川 乐山 614000
2 四川大学 物理科学与技术学院, 四川 成都 610064
在有机太阳能电池(OSC)中,活性层的光学吸收能力和电学传输能力之间存在着严重的不匹配,这是制约OSC效率提升的主要因素之一,而表面等离子体陷光技术是解决该矛盾的一种有效手段。将金属光栅结构植入OSC中作为电极,建立了基于等离子体金属光栅电极的OSC器件模型,采用时域有限差分法分析了光栅电极的等离子体增强效应对器件内部光场的影响。结果表明,金属等离子体光栅电极具有优秀的陷光能力和角度响应特性,对活性层的光吸收具有明显的增强作用。
光学器件 陷光结构 时域有限差分法 有机太阳能电池 表面等离子体 
光学学报
2015, 35(s1): s116001
作者单位
摘要
西北核技术研究所 强脉冲辐射环境模拟与效应国家重点实验室, 西安 710024
互补金属氧化物半导体(CMOS)有源像素(APS)图像传感器作为光电成像系统的核心器件, 被广泛应用在空间辐射或核辐射环境中, 辐照损伤是导致其性能退化, 甚至功能失效的主要原因之一。阐述了不同辐射粒子或射线辐照损伤诱发CMOS APS图像传感器产生位移效应、总剂量效应和单粒子效应的损伤物理机制。综述和分析了辐照损伤诱发CMOS APS图像传感器暗信号增大、量子效率减小、饱和输出电压减小、噪声增大以及暗信号尖峰和随机电码信号(RTS)产生的实验规律和损伤机理。归纳并提出了CMOS APS图像传感器辐照损伤效应研究亟待解决的问题。
位移效应 总剂量效应 单粒子效应 CMOS APS CMOS APS displacement effects total dose effects single event effects 
半导体光电
2014, 35(6): 945
作者单位
摘要
西北核技术研究所 强脉冲辐射环境模拟与效应国家重点实验室, 西安 710024
开展了光电耦合器在0.01, 0.1, 1.0和50 rad(Si)/s四种剂量率下的伽玛射线(60Coγ)辐照实验, 结果表明: γ辐照导致光电耦合器电流传输比下降, 辐照到相同总剂量, 电流传输比下降幅度基本上随剂量率的减小而增大。在不拆封破坏光电耦合器的情况下, 通过对光电耦合器中的发光二极管I-V特性、光敏晶体管增益及初级光电流的测试, 以及耦合介质传输损耗特性的分析, 证明了导致光电耦合器电流传输比退化的主导因素是光敏晶体管C-B区光响应度的下降。
光电耦合器 γ总剂量 低剂量率辐照损伤增强 optocoupler γ total dose enhanced low dose rate sensitivity 
强激光与粒子束
2014, 26(8): 084001
作者单位
摘要
西北核技术研究所 强脉冲辐射环境模拟与效应国家重点实验室, 西安 710024
选择了四种典型双极集成电路,在两种不同剂量率下,开展了不同温度的高温辐照加速实验,测量了典型双极集成电路的辐射敏感参数在不同高温辐照下的变化规律。实验结果表明:高温辐照能够给出空间低剂量率辐射损伤增强效应的保守估计,且存在最佳辐照温度,最佳辐照温度随总剂量的增加向低温区漂移,随剂量率的增大向高温区漂移,在相同剂量率和总剂量下,输入级为NPN晶体管的双极集成电路比输入级为PNP晶体管的最佳辐照温度低。
双极集成电路 低剂量率 高温辐照 界面态 bipolar integrated circuit low dose rate elevated temperature irradiation interface state 
强激光与粒子束
2014, 26(3): 034003
作者单位
摘要
乐山师范学院 物理与电子信息工程学院, 四川 乐山 614004
采用金属网格和泡沫材料实现低折射率材料媒质,并对其参数进行了优化,辐射源采用单极天线,制作了样机。利用HFSS电磁仿真软件对应用低折射率材料媒质天线与传统天线的方向性进行了对比研究,并研究了辐射源的参数对定向天线的性能影响。对样机进行了测试,测试结果与仿真结果比较吻合,与传统天线相比较,基于超低折射率特异材料的天线方向性明显提高。因此,选择适当电磁参数的超低折射率特异材料,用于定向天线的设计,可以改变传统天线的设计。
微波天线 电磁材料 低折射率材料 天线方向性 microwave antenna metamaterials low refractive index medium antenna directionality 
强激光与粒子束
2014, 26(1): 013006
作者单位
摘要
西北核技术研究所, 西安 710024
以解析公式的推导、位移损伤实验结果以及位移效应的数值模拟结果为基础,分析了位移效应产生的缺陷作为非辐射复合中心和多数载流子陷阱两种情形下的激光二极管阈值电流、外微分量子效率及IV特性随辐照注量的变化规律。通常的实验注量范围内,缺陷主要作为非辐射复合中心,导致激光二极管阈值电流随注量呈线性增大,但外微分量子效率基本不变,IV特性低压区电流增大;当辐照注量较高,引起明显的多数载流子去除效应时,阈值电流随注量的增大不再呈线性关系,同时外微分量子效率下降,IV特性高压区的电流减小。
激光二极管 位移损伤 阈值电流 外微分量子效率 IV特性 laser diode displacement damage threshold current external differential quantum efficiency IV characteristics 
半导体光电
2011, 32(2): 195
作者单位
摘要
1 乐山师范学院物理与电子工程学院, 四川 乐山 614004
2 四川大学物理科学与技术学院纳光子技术研究所, 四川 成都 610064
利用表面等离子体激元(SPP)的局域能量增强效应可提高现有光学光刻的分辨率。背向曝光SPP干涉光刻技术可以大面积制备低成本的纳米周期性结构。理论分析了SPP在背向曝光系统中的共振透射特性,提出了背向曝光SPP干涉光刻系统核心元件银层超透镜的优化设计方法,并利用时域有限差分法和理论解析式模拟计算了背向曝光SPP干涉光场分布,通过优化设计银层超透镜厚度和共振角,实验获得了较好的周期性光刻线条。
表面光学 表面等离波子激元干涉光刻 背向曝光 银层超透镜 
光学学报
2011, 31(12): 1222007
作者单位
摘要
1 乐山师范学院 物理与电子工程学院,四川 乐山 614004
2 四川大学 物理科学与技术学院 纳光子技术研究所,成都 610064
提出一种利用厚金属狭缝阵列耦合激发表面等离子激元制作非周期图形的纳米光刻模型.采用时域有限差分电磁场模拟仿真软件研究了厚金属狭缝阵列中表面等离子激元的激发、模式选择以及光刻胶中的光场分布.结果表明,通过优化厚金属狭缝阵列结构参量和匹配介质参量可有效抑制表面等离子激元在光栅狭缝出口处的发散,增加表面等离子激元的穿透深度,可获得高分辨率的较大曝光深度的周期和非周期纳米图形,可为纳米激光直写技术提供有益的借鉴.
光刻 厚金属狭缝 时域有限差分法 表面等离子激元 Lithography Thick metallic slits Finite-Difference Time-Domain(FDTD) Surface Plasmon Polaritons(SPP) 
光子学报
2011, 40(9): 1381

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!