作者单位
摘要
中国农业大学工学院, 国家农产品加工技术装备研发分中心, 北京 100083
马铃薯是我国第四大主要粮食作物, 随着马铃薯主食化战略的提出, 其市场占比逐年攀升, 但各地甚至同区域内马铃薯品质参差不齐, 严重影响了马铃薯行业的发展。 实现马铃薯品质快速无损检测对马铃薯主食化产业的发展有着重要的现实意义。 该研究以研发低成本马铃薯品质无损快速检测装置为目的, 采用连续投影算法(SPA)分析光谱仪环境下马铃薯加工品质特征波长的分布情况, 根据标准正态变换(SNV)预处理状态下的模型结果选取了一个包含7个波段(700, 750, 800, 850, 900, 950和1 000 nm)的多通道光谱传感器, 并根据马铃薯特殊的表皮特征及内部质地均匀性, 设计了一种手持式马铃薯多品质可见/近红外局部漫透射检测装置。 利用研发装置建立了马铃薯多品质偏最小二乘预测模型, 马铃薯干物质含量、 淀粉含量预测模型验证集均方根误差分别为1.05%和1.02%。 同时, 基于QT的开发工具, 采用C语言编写了实时分析设备控制软件, 实现了对马铃薯内部品质的一键式实时无损检测。 对研发装置检测稳定性和精度进行了试验验证。 结果表明, 研发的手持式马铃薯多品质传感器检测装置可以满足现场实时检测需求, 为马铃薯主食化产业的发展提供技术支撑。
马铃薯 多通道光谱传感器 无损检测 品质参数 手持式装置 Potato Multi-channel spectral sensor Non-destructive testing Quality parameters Handheld device 
光谱学与光谱分析
2022, 42(12): 3889
作者单位
摘要
中国农业大学工学院, 国家农产品加工技术装备研发分中心, 北京 100083
针对表面增强拉曼光谱信号重复性欠佳的问题, 利用实验室自行搭建的拉曼点检测系统, 以蜂蜜中硝基呋喃妥因兽药为检测对象, 探讨了基于蜂蜜固有内标的硝基呋喃妥因表面增强拉曼峰强校正方法。 首先通过含不同浓度硝基呋喃妥因蜂蜜样品及硝基呋喃妥因标准品的拉曼光谱对比分析, 确定739 cm-1处蜂蜜拉曼特征位移作为底物蜂蜜的内标峰, 用比值法校正硝基呋喃妥因1 353和1 612 cm-1处拉曼特征峰强用于蜂蜜中硝基呋喃妥因定量分析。 相同条件下分别采集了浓度为20 mg·kg-1的硝基呋喃妥因蜂蜜样品表面增强拉曼光谱30次, 1 353和1 612 cm-1处硝基呋喃妥因特征峰强相对标准偏差(RSD)分别为11.515 6%和11.162 5%, 利用739 cm-1处蜂蜜拉曼特征峰强作为内标分别校正1 353和1 612 cm-1处硝基呋喃妥因拉曼特征峰强后相对标准偏差分别降为4.852 6%和4.733 2%, 显著提升了表面增强拉曼特征峰强的重复性和稳定性。 因为仪器系统误差及表面增强过程中不可控因素引起的人为误差等对样品表面增强光谱中739 cm-1处蜂蜜特征峰强和1 353和1 612 cm-1处硝基呋喃妥因特征峰强的影响是完全相同的, 所以通过内标比值法可以有效消除和减少拉曼信号稳定性和重复性差的问题。 最后采集硝基呋喃妥因浓度范围为0.4~20 mg·kg-1的69个蜂蜜样品, 基于硝基呋喃妥因1 353和1 612 cm-1处拉曼特征峰强和蜂蜜739 cm-1处拉曼特征峰强比值, 分别建立了一元线性回归预测模型和多元线性回归模型, 其中基于蜂蜜739 cm-1处内标校正硝基呋喃妥因1 612 cm-1处拉曼特征峰强的一元线性回归模型效果最佳, 与校正前相比具有更高的精度和预测能力。 该模型校正集决定系数(RC2)和验证集决定系数(RV2)分别为0.971 2和0.969 6, 校正集均方根误差(RMSEC)和验证集均方根误差(RMSEP) 分别为1.115 1和1.242 2, 相对分析误差(RPD)为4.306 0。 结果表明, 被测底物本身持有固有内标的样品可无需加入额外的内标物, 简单用内标比值法可以有效消除仪器的系统误差以及表面增强剂与样品的混合时间等对拉曼信号强度的影响, 显著提高了拉曼特征信号的重复性和稳定性, 为表面增强拉曼光谱定量分析提供了技术参考。
表面增强拉曼光谱 蜂蜜 硝基呋喃妥因 快速检测 Surface-enhanced Raman spectra Honey Nitrofurantoin Rapid detection 
光谱学与光谱分析
2021, 41(2): 546
作者单位
摘要
1 中国农业大学工学院, 国家农产品加工技术装备研发分中心, 北京 100083
2 中国农业大学食品科学与营养工程学院, 北京 100083
随着经济水平的提升人们对大米品质要求越来越高, 由于不同大米品种之间价格差异也较大, 致使不少商贩以劣充优谋取利益, 有的掺和比例高达30%以上, 这种行为严重损害了消费者利益。 大米作为一种碳水化合物直接通过一维近红外光谱信息不易区分掺和米, 目前诸多研究集中在基于一维光谱的化学计量学判别模型建立。 二维相关光谱具有高分辨率、 解析峰的归属等优点, 可以挖掘出掺和米在一维光谱中隐藏的有效信息。 以五常大米作为研究对象, 选取难以用肉眼分辨的六种大米为掺入米, 分别制备5%~50%的不同掺和比例大米样品140个。 以五常大米近红外光谱的平均光谱作为参考谱, 掺和比例作为外部扰动因数, 将掺和米光谱和五常米光谱分别与参考谱进行二维相关运算, 通过解析不同掺和比例大米二维相关同步谱特性发现自相关谱1 420和1 920 nm两处自动峰值与同步谱(1 420, 1 920) nm和(1 920, 1 420) nm处交叉峰值强度均随掺和比例增加呈递增趋势, 其中1 920 nm自动峰值对掺和比例响应最显著。 通过对自相关谱1 420和1 920 nm两处自动峰产生机制的追溯并分析对应官能团归属, 发现大米中直链淀粉对掺和比例响应程度高于蛋白质及其他碳水化合物。 分别以五常大米同步谱中1 420和1 920 nm处自动峰值和(1 920, 1 420)nm处交叉峰值的最大值作为判别阈值, 对140个大米样品进行了判别试验。 结果显示, 基于1 920 nm自动峰值的判别效果最佳正确率达93.3%, 掺和比例20%及以上掺和米样品判别正确率为100%, 随着掺和比例降低判别正确率也逐渐下降, 掺和比例15%, 10%和5%样品判别正确率分别为91.7%, 66%和75%。 综上所述, 以掺和比例作为外部干扰因数解析不同掺和比例的大米二维同步谱特性, 通过特征峰值的差异可以简单有效区分掺和米, 与以往近红外判别模式相比不需要准备大量样品来训练模型, 为快速鉴别掺和大米提供一种新思路。
二维相关近红外光谱(2D-NIR) 同步谱 掺和判别 大米 Two-dimensional correlation spectrum(2D-NIR) Synchronous spectrum Adulteration judgment Rice 
光谱学与光谱分析
2020, 40(5): 1559
田纳玺 1,2,3蒋晖 1,3,*李爱国 1,3,**梁东旭 1,3闫帅 1,3
作者单位
摘要
1 中国科学院上海应用物理研究所, 上海 201800
2 中国科学院大学, 北京 100049
3 中国科学院上海高等研究院上海同步辐射光源先进成像与工业应用研究部, 上海 201204
设计和加工了一台相位补偿的压电变形镜,使用干涉仪离线表征了其压电变形性能,并提出迭代全局优化算法,实现了变形镜对目标面形的快速高精度逼近。结合X射线散斑扫描技术,在光束的聚焦模式下测试了变形镜的在线相位补偿性能和对聚焦光斑尺寸的优化能力,结果显示,初始的43.4 μm焦斑尺寸经相位补偿后被压缩到了12.9 μm。上述研究为上海同步辐射光源的快速相位补偿提供了可能。
X射线光学 X射线变形镜 相位补偿 X射线散斑扫描技术 硬X射线聚焦 同步辐射 
光学学报
2020, 40(9): 0934001
李文涛 1,2,*彭放 1白燕枝 2,3于振海 2[ ... ]王霖 2,6
作者单位
摘要
1 四川大学 原子与分子物理研究所,成都 610065
2 北京高压科学研究中心,上海 201203
3 上海交通大学 物理与生物学院,上海 200240
4 中国科学院 上海应用物理研究所,上海 201203
5 中国科学院 高能物理研究所,北京 100049
6 吉林大学 超硬材料国家实验室,长春 130012
利用原位高压拉曼散射和X射线衍射技术,研究了KBrO3在高压下晶格振动和晶体结构演化行为。最高压力达30.9 GPa。通过拉曼光谱发现,在高压下拉曼峰位除了单调移动,没有其它变化,表明KBrO3在研究的压力范围没有发生相变。原位高压X射线衍射实验数据显示,其在高压下依然保持常压的六方结构。通过进一步分析,分别得到了体弹模量B0=25.9(2) GPa(B′0=5.68(0.38))和部分拉曼峰的Grüneisen参数。
溴酸钾 拉曼散射 X射线衍射 高压 Grüneisen参数 KBrO3 Raman scattering x-ray diffraction high pressure Grüneisen parameter 
光散射学报
2017, 29(2): 133

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!