作者单位
摘要
1 中煤科工集团沈阳研究院有限公司煤矿安全技术国家重点实验室, 沈抚示范区, 辽宁 沈阳 113122
2 沈阳航空航天大学航空发动机学院, 辽宁 沈阳 110136
为掌握反应器结构参数和放电参数对大气压非平衡等离子体射流(N-APPJ)的射流长度的定量影响, 设计了多结构的针-环式电极氩气等离子体射流装置, 分别研究了放电电压、 电极间隙、 高压电极放电末端与接地电极的距离及氩气体积流量对射流长度的影响, 并采用发生光谱法对该反应器产生的等离子体电子激发温度进行了计算。 结果表明: 等离子体射流的最大长度可达80 mm; 高压电极放电末端与接地电极之间的距离越大, 射流长度越长但不是线性增长; 射流长度随电极间隙的增加呈现先增大后减小的趋势且在电极间隙为4.5 mm时该射流达到最大长度; 随着氩气体积流量的增加, 等离子体射流长度也呈现出先增大后减小的趋势且减小的幅度较低; 电子激发温度在高压电极和接地电极处较高, 两电极之间部分次之, 在石英管出口处会有比较明显的下降。
大气压等离子体射流 介质阻挡放电 射流长度 电极结构参数 Atmospheric pressure plasma jet Dielectric barrier discharge Jet length Electrode structure parameters 
光谱学与光谱分析
2023, 43(12): 3682
Author Affiliations
Abstract
1 Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
2 JENOPTIK Optical Systems GmbH, Göschwitzer Straße 25, 07745 Jena, Germany
3 Institute of Manufacturing Science and Engineering, TU Dresden, 01062 Dresden, Germany
To meet the increasing market demand for optical components, Plasma Jet Machining (PJM) of Borosilicate Crown Glass (BCG), which can be an alternative to Fused Silica, is presented. Surface figure error correction was performed by applying reactive plasma jet etching, where a fluorine-containing microwave driven plasma jet is employed to reduce the figure error in a deterministic dwell-time controlled dry etching process. However, some of the glass constituents of BCG cause the formation of a residual layer during surface treatment which influences the local material removal. By heating the substrate to about TS = 325 °C to 350 °C during processing, the etching behavior can clearly be improved. Geometric conditions of the optical element nevertheless lead to a characteristic temperature distribution on the substrate surface, which requires an adjustment of the local dwell times in order to obtain the required material removal. Furthermore, the resulting local surface roughness is also influenced by the surface temperature distribution. It is shown that figure error can be significantly reduced by taking the local temperature distribution and resulting local etching rates into account. A subsequent polishing step smoothens roughness features occurring during etching to provide optical surface quality.To meet the increasing market demand for optical components, Plasma Jet Machining (PJM) of Borosilicate Crown Glass (BCG), which can be an alternative to Fused Silica, is presented. Surface figure error correction was performed by applying reactive plasma jet etching, where a fluorine-containing microwave driven plasma jet is employed to reduce the figure error in a deterministic dwell-time controlled dry etching process. However, some of the glass constituents of BCG cause the formation of a residual layer during surface treatment which influences the local material removal. By heating the substrate to about TS = 325 °C to 350 °C during processing, the etching behavior can clearly be improved. Geometric conditions of the optical element nevertheless lead to a characteristic temperature distribution on the substrate surface, which requires an adjustment of the local dwell times in order to obtain the required material removal. Furthermore, the resulting local surface roughness is also influenced by the surface temperature distribution. It is shown that figure error can be significantly reduced by taking the local temperature distribution and resulting local etching rates into account. A subsequent polishing step smoothens roughness features occurring during etching to provide optical surface quality.
Plasma Jet Machining Atmospheric Plasma Jet Reactive plasma jet etching Borosilicate Crown Glass Figure error Chemical etching 
Journal of the European Optical Society-Rapid Publications
2022, 18(1): 2022003
作者单位
摘要
西华大学 电气与电子信息学院,成都 610000
采用二维轴对称流体模型对单电极结构(不锈钢针管)和双电极结构(不锈钢针管-高压环形电极)下同轴双通道进气的大气压氦气等离子体射流进行了对比研究。研究表明:相比于单电极结构,双电极结构下射流的传播速度明显降低,介质管内尤为严重。同时双电极结构下射流的空间结构也发生了显著变化。在单电极结构下,随射流发展由环形中空结构转变为实心圆盘结构;而在双电极结构下则呈现出实心圆盘结构至环形中空结构再至实心圆盘结构的演化过程,改善了射流空间分布的均匀性。此外,还研究了双电极结构下高压环形电极厚度对射流的影响。研究表明,随环形电极厚度的增加,射流的传播速度进一步降低,射流通道径向收缩,同时环形中空结构的射流内径减小,进而改善了射流径向分布的均匀性。
等离子体射流 电极结构 同轴双通道 射流结构 径向分布 plasma jet electrode structure coaxial dual-channel inlet jet structure radial distribution 
强激光与粒子束
2022, 34(8): 085003
作者单位
摘要
四川大学 电子信息学院,成都 610065
基于同轴传输线结构设计了两种不同喷嘴结构的大气压微波等离子体射流(MW-APPJ)装置,其工作频率2.45 GHz,工作气体为氩气,分别研究了两种不同喷嘴结构对等离子体放电特性产生的影响。仿真结果表明,MW-APPJ在气体喷嘴处会产生高强度的电场,经过优化结构,实现在频率2.45 GHz下,喷嘴处的场强满足氩气电离的击穿场强阈值要求。同时,利用多物理场耦合仿真软件对装置的气流分布进行了稳态模拟,并通过实验对比分析了两种喷嘴结构下大气压氩等离子体射流的基本特性。实验结果表明,不同的喷嘴结构会影响等离子体装置的反射系数随输入功率的变化规律,但并不影响等离子体射流长度随输入功率的变化规律和反射功率随进气流量的变化规律;同时,在大气压下,稳态微波等离子体射流呈现出类金属性,等离子体中的电子只能在很薄的区域中吸收微波能量,因而造成微波的反射功率较大。
微波放电 大气压等离子体射流 电磁场仿真 稳态层流仿真 放电特性 microwave discharge atmospheric pressure plasma jet electromagnetic field simulation steady-state laminar flow simulation discharge characteristics 
强激光与粒子束
2022, 34(4): 049001
杨子宁 1,2,3,4王蕊 1,2刘青山 1,2孙健勇 1,2[ ... ]许晓军 1,2,3,4,*
作者单位
摘要
1 国防科技大学 前沿交叉学科学院, 长沙 410073
2 国防科技大学 量子信息学科交叉中心, 长沙 410073
3 脉冲功率激光技术国家重点实验室, 长沙 410073
4 高能激光技术湖南省重点实验室, 长沙 410073
半导体泵浦亚稳态惰性原子激光是高能光泵浦气体激光领域具有潜力的新方案。已有报道均在约束的放电空间内产生亚稳态原子,功率放大受到多因素制约。为突破现有方案的局限,采用大气压等离子体射流方式在羽流区域产生高浓度亚稳态氩原子(1014 cm−3量级),将放电和激光区域空间分离,利用811 nm窄线宽半导体激光器作为泵浦源,基于泵浦、激光和气流相互垂直的结构实现912 nm激光输出,有效拓展了该型激光体系的功率定标放大能力。
高能激光 光泵浦气体激光器 半导体激光器 亚稳态原子 等离子体射流 high energy laser optically pumped gas laser diode laser metastable noble gas atom plasma jet 
强激光与粒子束
2022, 34(2): 021001
作者单位
摘要
中国工程物理研究院 流体物理研究所,四川 绵阳 621900
利用激光烧蚀等离子体射流可以获得数km/s 甚至上千km/s 的射流速度,远超目前绝大多数设备所能提供的模拟速度,并且覆盖了极大的温度与密度范围,作为加载手段具有广阔的应用前景。通过实验方法,探索和发展激光烧蚀等离子体射流这一新型实验模拟手段,利用高功率激光烧蚀产生高温高压等离子体射流,实现超高速气体动力学实验室模拟的新途径。以此作为加载条件,研究超高速物体与气体相互作用的气体动力学特性。通过建立激光烧蚀等离子体射流与固体靶相互作用实验方法,可进一步研究等离子体射流的产生、发展以及高速物体气体动力学,为下一步开展天体物理、小行星形貌、超高速陨石与行星大气相互作用机制等相关研究奠定基础。
激光烧蚀 超高速等离子体射流 射流与固体靶相互作用 气体动力学 laser-ablation hypervelocity plasma jet jet and solid target interaction gas dynamics 
强激光与粒子束
2022, 34(1): 011013
作者单位
摘要
1 大连理工大学能源与动力学院, 辽宁 大连 116024
2 大连理工大学物理学院三束材料改性教育部重点实验室, 辽宁 大连 116024
大气压氩等离子体射流是一种非平衡等离子体, 能够产生大量的电子、 离子、 激发态粒子和活性基团, 在燃烧过程中这些粒子的参与能够大大降低化学反应的活化能, 而等离子体射流的动力学效应影响粒子输运过程, 使得等离子体射流具有一定程度的辅助燃烧效果。 本实验通过发射光谱测量, 分别识别出了在非预混和预混的甲烷燃烧过程参与燃烧的中间物种(OH, CH和C2), 测量了这些自由基的发射光谱强度随着外部控制变量(放电电压、 混合当量比)变化的规律。 对于非预混情况, 实验发现随着产生等离子体射流放电电压的增大, 火焰总体长度变短, 火焰面出现褶皱, 火焰根部蓝色区域面积不断扩大, 在22 kV时, 大约占总火焰面积的1/2。 对火焰根部的发射光谱测量结果表明, 当电压达到16 kV时, 发射光谱明显增强, 而当电压进一步增大到22 kV时, 这些自由基粒子的光谱强度却出现下降, 这归因于在等离子体产生的电离风作用下管内气体流速增大, 导致燃烧区发生移动远离喷口, 使采集到的火焰根部区域变小造成的。 另外, 研究了在不同的燃料当量比下等离子体射流对预混气体助燃的过程, 实验发现燃料当量比为2时, OH(A-X)的光谱发射强度随电压的增大而增强而CH(A-X)和C2(d)的发射强度在等离子体射流直接作用的情况下减小, 反映了在氩等离子体射流参与助燃下燃烧变得更加充分了。 实验发现等离子体射流产生大量的自由基以及等离子体电离风对混合过程的影响能够对燃烧过程产生明显影响。
大气压 等离子体射流 助燃 甲烷 发射光谱 Atmospheric pressure Plasma jet Assisted combustion Methane (CH4) Optical Emission spectroscopy (OES) 
光谱学与光谱分析
2021, 41(10): 3251
作者单位
摘要
河北大学物理科学与技术学院, 河北 保定 071002
大气压等离子体射流因其产生的等离子体羽富含活性粒子而在废水净化、 元素探测、 材料处理等方面具有良好的应用前景。 通常等离子体羽的直径较小, 限制了其工作效率。 针对于此, 利用交流电压激励大气压氩气等离子体射流, 产生了直径约为14 mm的大尺度均匀等离子体羽。 采用发射光谱法对电子密度和氧原子浓度随不同实验参数的变化关系进行了研究。 光电测量结果表明, 当外加电压峰值或氩气流量增加时, 等离子体羽发光亮度增加。 当电压峰值较低时, 等离子体羽的上下游在电压的每个周期均有两个光脉冲信号, 且上游光信号强度比下游的大。 随着电压峰值增大, 上下游等离子体羽的光信号强度都增大。 当电压峰值较高时, 上下游等离子体羽的光信号在每个电压周期呈现三个放电脉冲。 不论每个电压周期放电脉冲数目多少, 上下游等离子体羽的发光信号均具有同步性。 利用光谱仪采集了300~800 nm范围内上下游等离子体羽的发射光谱, 发现它们中均含有OH和N2的谱线及ArⅠ和OⅠ谱线。 其中, 上游等离子体羽的ArⅠ谱线强度比下游的大, 但OH和N2的谱线强度比下游的小。 利用谱线强度比对上、 下游等离子体羽的电子密度进行了研究。 结果表明, 上游等离子体羽的电子密度在1014 cm-3量级, 高于下游羽的电子密度(1013~1014 cm-3量级)。 并且, 上游和下游等离子体羽的电子密度均随外加电压峰值的升高而增加, 随氩气流量的增加而增加。 利用光化线强度法, 研究了下游羽中氧原子浓度随实验参数的变化规律。 结果表明, 氧原子浓度沿气流方向降低; 对于一个等离子体羽, 平均而言氧原子浓度随外加电压峰值升高而增加, 随氩气流量增加而增加。 对于以上实验现象, 利用气体放电的基本理论进行了定性解释。
等离子体射流 等离子体羽 发射光谱 光化线强度法 氧原子浓度 Plasma jet Plasma plume Emission spectrum Optical actinometry Concentration of oxygenatom 
光谱学与光谱分析
2021, 41(8): 2644
作者单位
摘要
大连理工大学 三束材料改性教育部重点实验室,辽宁 大连 116024
采用二维轴对称流体模型对比研究了3种不同电极结构下大气压Ar等离子体射流的基本特性。第一种是带绝缘介质的针电极结构(电场方向和气体流方向平行),第二种是在第一种电极结构的介质管外增加一个垂直气流方向的接地环电极,第三种是不带绝缘介质的裸针电极结构。研究结果表明,接地环电极的引入对介质管内外的射流传播影响不同。在介质管内,接地环电极使管内表面附近的径向电场增加,电子密度升高,射流传播速度加快,但对中心轴附近的电场和电子密度影响很小;然而在介质管外,接地环电极的引入导致轴向和径向电场均减小,从而引起射流的传播长度减小,射流通道径向收缩。通过带绝缘介质的针电极和裸针电极结构的对比研究发现,保持其他条件不变,去掉包裹在针电极上的介质后,由于等离子体电势升高,电场增加,射流的传播长度几乎增加一倍,峰值电子密度增加近一个数量级,而且在整个射流通道内电子密度都保持相对高的值。此外,对3种电极结构下的主要活性粒子的产生和输运进行了比较研究。
大气压Ar等离子体射流 电极结构 二维模拟 活性粒子 atmospheric pressure Ar plasma jet electrode structure 2D simulation reactive particle 
强激光与粒子束
2021, 33(6): 065011
作者单位
摘要
1 哈尔滨工业大学 物理系, 黑龙江 哈尔滨 150001
2 上海机电工程研究所, 上海 201109
为了深入了解大气压下Ar等离子体射流的产生机理和内部电子的状态, 对Ar等离子体射流进行了发射光谱诊断, 以玻尔兹曼斜率法对电子激发温度进行测算, 利用发射光谱的连续谱绝对强度法测算出电子密度。通过设计一种可调节气压的金属针-环型介质阻挡放电装置, 研究了氩气压和放电功率对Ar等离子体射流的电子激发温度和电子密度的影响。结果表明, 随着气压从6 kPa升高到16 kPa, 电子激发温度从0.83 eV下降到0.68 eV, 电子密度从4.45×1022 m-3减小到0.44×1022 m-3(波长648.06 nm), 且随着放电功率从0.177 5 W增大到1.792 6 W, 电子激发温度从0.82 eV升高到5.14 eV, 电子密度从0.27×1022 m-3增大到4.61×1022 m-3, 而且电子密度较低时, 电子激发温度的变化更明显。由此得出结论, 氩气压和放电功率对电子激发温度不仅有直接影响, 还有通过电子密度变化导致的间接影响, 电子密度较低时, 氩气压和放电功率对电子激发温度的影响会相对更大一些。同时, 选用两个波长计算的电子密度结果很接近, 验证了诊断结果的准确性。
等离子体射流 发射光谱 绝对强度 电子激发温度 电子密度 plasma jet emission spectrum absolute intensity electron excitation temperature electron density 
发光学报
2019, 40(8): 1049

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!