作者单位
摘要
滨州学院山东省黄河三角洲生态环境重点实验室, 山东 滨州 256603
蔬菜大棚种植对蔬菜供应发挥着重要的作用, 蔬菜大棚棚龄会影响蔬菜的产量和质量。 以不同棚龄(1年、 10年和18年)的黄瓜为对象, 利用漫反射傅里叶变换中红外光谱, 通过解析黄瓜的光谱特征峰, 探究棚龄对黄瓜品质的影响。 研究表明, 黄瓜的多糖和蛋白质组分在3个棚龄呈现先增加后降低的趋势, 10年棚龄种植的黄瓜多糖和蛋白质组分显著高于1年和18年的黄瓜多糖和蛋白质组分。 高的棚龄(即10年和18年)显著增加了黄瓜的木质素组分。 木质素组分主要分布于黄瓜皮中, 增加木质素组分会降低黄瓜的食用口感。 另外, 黄瓜中各有机组分的比值能综合反映不同棚龄下黄瓜的品质。 18年棚龄的黄瓜多糖与蛋白质组分的比值以及多糖与木质素组分的比值低于1年和10年棚龄的黄瓜各有机组分的比值, 表明1年和10年棚龄的黄瓜中碳水化合物和营养物质的比值更加均衡。 通过分析黄瓜各有机组分以及黄瓜各有机组分比值随着黄瓜棚龄的变化, 知悉黄瓜棚龄在10年以内时, 对黄瓜品质提升具有促进作用, 但更长的棚龄会抑制黄瓜品质。 因此, 综合考虑黄瓜的品质, 建议黄瓜棚龄不宜太长。 另外, 通过分析棚龄对黄瓜叶片有机组分的影响, 发现黄瓜叶片各组分与黄瓜各组分的变化趋势相似。 线性相关分析指出黄瓜蛋白质和木质素组分分别与黄瓜叶片蛋白质和木质素组分显著正相关, 表明黄瓜叶片在一定程度上能反映黄瓜的营养成分和黄瓜口感。 利用红外光谱解析不同棚龄下表征黄瓜品质的有机组分, 为蔬菜大棚管理以及提高蔬菜品质提供了科学依据。
中红外光谱 有机组分 黄瓜品质 蔬菜大棚 种植年限 Mid-IR spectroscopy Organic compounds Cucumber quality Vegetable greenhouse Planting years 
光谱学与光谱分析
2022, 42(6): 1816
作者单位
摘要
1 中国刑事警察学院声像检验技术系, 辽宁 沈阳 110035
2 中国刑事警察学院痕迹检验技术系, 辽宁 沈阳 110035
对遗留在客体表面的手印进行提取和鉴定是侦破案件的重要依据。 对在犯罪现场发现的手印进行固定提取时, 首先应该使用没有破坏性的光学无损检验技术。 实践表明光学无损检验技术对于绝大部分光滑客体上的手印都能取得很大的反差和较好的纹线细节, 而对于光滑度较差的客体上的手印则需要使用有损的物理法和化学法对指印进行固定提取。 其中粉末法和熏显法在手印显现中得到了广泛的应用, 但是常用的绝大部分粉末和熏显物质对长期从事手印显现的工作人员身体有较大的毒副作用。 而且绝大部分常用的荧光粉末需要在紫外线的激发下产生荧光, 紫外线激发手印产生荧光的同时也常会激发承痕客体产生很强的背景荧光, 进而降低了手印与背景的反差。 因此寻找一种成本低廉、 无毒无害、 操作简单和应用性广泛的手印显现方法是当务之急。 研究了三种无毒无害、 成本低廉的蔬菜粉末的荧光性能, 并且将其应用于手印显现中。 首先通过荧光分光光度计测定西蓝花粉末、 菠菜粉末和紫菜粉末的荧光激发光谱和荧光发射光谱。 通过荧光测定发现, 西蓝花粉末的荧光比菠菜粉末和紫菜粉末的荧光强很多, 所以选择西蓝花粉末显现犯罪现场常见的疑难客体表面汗潜手印。 实验结果表明: (1)西蓝花粉末、 菠菜粉末和紫菜粉末都能发出荧光, 荧光激发光谱峰值都在417 nm, 荧光发射光谱峰值都在678 nm, 其中西蓝花粉末发出的荧光最强。 (2)将西蓝花粉末用于多色图案干扰的非渗透性和渗透性客体上的汗潜手印的显现中, 在415 nm的紫光的照射下能够发出明亮的红色荧光。 拍照荧光指印时在镜头前加上透过中心波长为680 nm左右的窄带通干涉滤光镜, 结果显示手印纹线与背景反差强烈, 纹线清晰连贯, 消除背景的干扰。 (3)与传统的荧光粉末显现法相比, 该显现方法具有较高的显现灵敏度。 (4)有些客体背景图案在415 nm的紫光的照射下也有发光, 但与西蓝花粉末的非常强的荧光相比, 背景的荧光弱得多, 所以使得手印与背景之间形成了较大的反差并且纹线的细节特征清晰。 (5)粗糙客体上手印的显现也获得了很大的反差, 粗糙的背景没有对纹线形成干扰而形成了清晰连贯的纹线。 (6)实验中使用的市售的西蓝花粉末具有颗粒细小、 吸附能力强等特点, 能够促进手印物质与西蓝花粉末之间的选择性吸附, 进而进一步提高手印显现的灵敏度。
手印显现 蔬菜粉末 可见荧光 潜在手印 Fingerprint development Vegetable powders Visible fluorescence Latent fingerprints 
光谱学与光谱分析
2022, 42(1): 158
作者单位
摘要
吉林大学生物与农业工程学院, 吉林 长春 130022
大气中的颗粒物不仅影响人类生活, 还影响植物的光合作用、 生长发育和产量品质。 实现了颗粒物污染环境的人工模拟, 并对采收期的小白菜、 生菜、 小油菜三种叶菜进行颗粒物作用试验, 获取叶片的光合生理信息和高光谱数据, 基于高光谱技术和植物表型分析叶菜对颗粒物的响应机理, 研究叶菜的光合特性和光谱特征对颗粒物污染的响应情况。 结果表明: 以颗粒物作为唯一差别条件下, 三种叶菜叶片的高光谱曲线整体趋势相同, 在可见光波段内试验组反射率增加最大, 红边位置发生蓝移, 小油菜对颗粒物的作用最敏感, 小白菜吸附颗粒物的能力最强。 分别比较三种叶菜的净光合速率与叶片原始光谱、 一阶导数光谱的相关性, 利用相关分析法提取三种叶菜的敏感波段, 用原始光谱、 FD、 MSC和相关分析法提取特征波长; 比较10个高光谱特征参数及4个植被指数与净光合速率的相关系数, 选出敏感光谱特征参数和植被指数, 即生菜的Dr, SDr, SDr/SDb和SDr/Sdy, 小白菜的SDr, Dy, NIRRP, (SDr-SDy)/(SDr+SDy)以及小油菜的λr, SDy, (SDr-SDy)/(SDr+SDy)。 用ln对数运算、 多项式函数以及几种组合方法建立三种叶菜叶片的净光合速率定量反演模型, 其中, 预处理方法采用SG, FD, SD和MSC, 建模方法采用CLS, PLS, PCR和SMLR。 以相关系数为模型评价指标, 最终确定FD+SG+PLS方法是建立生菜和小白菜净光合速率反演模型的最优方法, FD+SG+MSC+SMLR方法是建立小油菜净光合速率反演模型的最优方法。 所建模型可为今后颗粒物污染环境下的模型修正提供参考, 具有实用性。 研究结果为利用高光谱技术研究叶菜类蔬菜在颗粒物污染环境下的诊断与分析提供理论依据, 为设施农业蔬菜的病害预警、 生理信息监测、 设施环境的净化和管控提供新思路。
颗粒物 高光谱 叶菜 净光合速率 反演模型 Particle matters Hyperspectral Leaf vegetable PM2.5 Net photosynthetic rate Inversion model PM2.5 
光谱学与光谱分析
2021, 41(1): 236
作者单位
摘要
天津大学精密测试技术及仪器国家重点实验室, 天津 300072
植物油分类鉴别方法研究在食品安全与质量监管中具有重要的研究意义及应用价值。 近红外光谱方法可实现复杂成分定性与定量分析, 具有无损、 快速的优势, 在植物油鉴别分类方面应用广泛。 研究了基于二维相关近红外光谱的植物油分类鉴别方法: 利用傅里叶变换近红外光谱仪采集不同种类植物油的动态光谱, 对其进行二维相关分析, 得到二维相关同步谱, 同步谱的主对角元素即其自相关谱, 利用主成分分析提取自相关谱的主成分, 最后基于欧氏距离实现植物油种类鉴别。 利用二维同步谱的自相关谱主成分之间的欧氏距离实现常见植物油分类判别, 提高了分类准确性和算法效率。 二维相关分析以正己烷浓度为扰动因素, 采集不同浓度扰动下植物油动态光谱, 选择不同种类植物油近红外吸收光谱差异最大的6 001~6 063 cm-1波长范围计算植物油样本的二维相关谱。 二维相关分析的计算过程相对于原始谱而言, 其实质就是提取不同品种的植物油随扰动因素变化的特征信息。 而这些特征信息体现在大量的数据点中(二维相关同步谱矩阵), 因此需要进一步降低变量维度。 二维同步谱的对角线元素, 即其自相关谱, 代表了不同波长处光谱强度随扰动因素变化的程度, 这里用自相关谱来代替二维同步谱, 大大减少了变量数量。 为了进一步降低数据维度, 对各种类植物油的自相关谱进行主成分分析, 将自相关谱主成分作为分类模型参数。 通过计算各种类植物油自相关谱主成分之间的欧式距离, 在择近原则基础上实现不同种类植物油鉴别。 实验结果表明, 二维相关近红外光谱与其特征提取方法相结合可以提高植物油分类准确度, 基于自相关谱主成分之间欧式距离的分类方法也为食用油鉴别应用以及自动化处理提供了有效手段。
近红外光谱 二维相关谱 主成分分析 植物油 分类鉴别 Near-infrared spectroscopy Two-dimensional correlation spectrum Principal component analysis Vegetable oil Classification 
光谱学与光谱分析
2020, 40(10): 3230
作者单位
摘要
1 闽江学院材料与工程系, 福建 福州 350108
2 福建省测试技术研究所, 福建 福州 350003
红外光谱与化学计量学结合成为植物油鉴定的热门方法, 这种结合目前都基于植物油红外光谱, 提取了植物油主成分可皂化物的红外光谱信息未有效提取植物油微量成分不皂化物的信息, 所构建的植物油鉴定模型的敏感性仍有待提高。 不皂化物特征性强, 为有效获取其红外光谱, 需要预先分离富集, 现有的植物油不皂化物分离富集方法操作过程繁琐、 耗时, 批量样本基本无法采用这种方法。 采用增加皂化液碱度、 超声加热皂化的方法提高植物油皂化效率, 缩短皂化时间。 在提高皂化速度的基础上, 通过①合理配置正己烷、 乙醇及水的比例形成易分层体系; ②将有机溶剂多次提取改为一次提取; ③特别是采用首次研制的专用固相萃取小柱, 一次性快速去除有机相中残余碱性物质和水, 大大缩短不皂化物提取时间。 不皂化物分离富集时间从国标法的约2~3 h缩短至本法的约20 min。 新建的不皂化物分离富集方法有很好的稳定性, 同一样本不同人员分别制样, 得到的不皂化物红外光谱相同, 可以保证一个样品一种光谱。 该方法的建立不仅解决了基于不皂化物红外光谱结合化学计量学构建植物油鉴定模型的关键技术问题, 还为色谱与色质联用技术测定植物油不皂化物的快速样品前处理创造前景。 采用所建立的植物油不皂化物快速分离富集方法, 提取五个不同品牌的芝麻油和五个不同品牌玉米油不皂化物, 并采集它们的红外光谱, 实验数据表明: 红外光谱几乎完全相同的芝麻油与玉米油其不皂化物红外光谱有非常大的差异。 可以预测, 在植物油红外光谱基础上, 结合其不皂化物红外光谱数据, 将可以大大提高某些植物油(如芝麻油)红外光谱鉴定方法的敏感性。
植物油 不皂化物 红外光谱 分离富集 Vegetable oil Unsaponifiables Infrared spected Separation and enrichment 
光谱学与光谱分析
2020, 40(6): 1852
作者单位
摘要
河南工业大学粮油食品学院, 河南 郑州 450001
过氧化值的快速、 准确检测对食用油脂的品质及其食品安全控制具有重要意义。 近红外光谱技术是一种理想的过氧化值测量手段, 但校正模型的建立需要耗费大量的资源。 旨在通过近红外光谱信息与油脂过氧化物间的关系分析, 探索对不同种类、 不同等级植物油建立同一校正模型的可行性, 以不同等级的大豆油和菜籽油为研究对象, 结合二维相关光谱技术对两种植物油的近红外光谱进行分析, 通过间隔偏最小二乘法选择过氧化值通用模型的最佳检测波段, 考察了正交信号校正(OSC)、 标准正态变量变换(SNV)和二阶导数(SD)对两种植物油过氧化值校正模型的影响, 比较了主成分回归(PCR)、 偏最小二乘法(PLS)和支持向量机回归(SVR)三种建模方法的预测效果, 构建了大豆油(一级+三级)、 菜籽油(一级+三级+四级)、 一级油(大豆油+菜籽油)、 三级油(大豆油+菜籽油)四种通用模型。 结果显示: (1)近红外光谱能够检测植物油过氧化值的变化情况, 对应的光谱信息主要分布于1 700~2 200 nm区域; (2)通用模型最佳的波段、 预处理方法和建模方法分别为1 700~2 200 nm、 SD法和PLS法; (3)四种通用模型中一级植物油(大豆油和菜籽油)的过氧化值通用模型具有较好预测结果, 其预测均方根误差(RMSEP)、 决定系数(R2)分别为0.412和0.920, 与一级的大豆油和菜籽油单一模型相比, 预测精度相差不大。 研究表明生产工艺过程相差不大的一级植物油间有可能建立准确性高的通用模型。 此外, 为了扩展通用模型的性能, 需要不断用新产品对模型进行及时更新。
近红外光谱 通用模型 化学计量学 植物油 过氧化值 Near-infrared spectroscopy General model Chemometrics Vegetable oil Peroxide value 
光谱学与光谱分析
2020, 40(6): 1828
作者单位
摘要
中国科学院空间主动光电技术重点实验室, 中国科学院上海技术物理研究所, 上海 200083
特级初榨橄榄油作为一种冷榨植物油含有较为丰富的不饱和脂肪酸和多酚类化合物, 其营养价值较高。 目前, 橄榄油的掺假问题是业界最严重的问题之一, 中国对橄榄油的消费量与日俱增, 国内橄榄油市场较为混乱, 掺假造假现象层出不穷, 从橄榄油的国外进口到国内二次包装都有可能存在人为干扰和品质造假, 如果不加以有效监督和制止, 对国民的健康和财产将造成严重损失。 如果通过传统的化学分析方法获取所有成分信息势必会增加检测周期, 不利于商品的快速流通, 对生产厂商和消费者来说都是一种损失。 为应对复杂多变的橄榄油掺伪技术及国内具备橄榄油检测资质机构不足的问题, 提出一种基于超连续光谱特级初榨橄榄油的快速检测方法, 为实现快速鉴别提供了可能性, 研究选用特级初榨橄榄油、 菜籽油、 茶油、 芝麻油、 稻米油、 葵花油、 玉米油以及大豆油作为研究对象, 分别采集每种植物油的超连续光谱并对初步光谱数据进行光谱预处理, 最后计算了不同样本间超连续光谱的皮尔逊相关系数并以此作为特级初榨橄榄油判别的主要依据。 实验结果显示不同样本特级初榨橄榄油间的超连续光谱的皮尔逊相关系数在0.901 1以上, 而特级初榨橄榄油与其他种类植物油的超连续光谱的皮尔逊相关系数在0.172 2~0.899 0之间。 研究表明以皮尔逊相关系数0.901 1作为判别特级初榨橄榄油与其他植物油的检测阈值, 可实现快速实时的精准检测识别。 该技术与分光光度计的吸收透射光谱相比, 最大的优势在于采集周期短和光谱指纹特征丰富, 周期短表现为光谱曝光采集时间仅为100 ms, 光谱指纹特征丰富表现为除包含吸收光谱外还表现出各种荧光活性物质所特有的荧光光谱。 除此之外, 可将超连续谱光源应用推广到食品安全检测技术领域。 该技术装置简单且易于推广对国内橄榄油的检测和市场规范具有一定的研究意义。
超连续光谱 特级初榨橄榄油 积分球 可见光谱 植物油 Supercontinuum spectrum Extra virgin olive oil Integrating sphere Visible spectrum Vegetable oil 
光谱学与光谱分析
2020, 40(4): 1251
作者单位
摘要
1 南京林业大学机械电子工程学院, 江苏 南京 210037
2 江西农业大学工学院, 江西 南昌 330045
3 浙江农林大学工程学院, 浙江 临安 311300
油脂中的反式脂肪酸(TFA)有害人们的身体健康, 有必要对其含量进行监测。 共收集各类食用植物油样本79个, 涉及9个品种和27个品牌, 分配到校正集和预测集的样本数分别为53个和26个。 采用QE65000拉曼光谱仪采集79个样本的拉曼光谱, 利用自适应迭代惩罚最小二乘法去除样本拉曼光谱的荧光背景; 在此基础上, 采用多种归一化方法对样本拉曼光谱进行处理, 并对拉曼光谱的建模波数范围进行初选; 再利用竞争性自适应重加权采样(CARS)方法筛选与食用植物油TFA含量相关的光谱变量, 并应用偏最小二乘(PLS)回归将食用植物油TFA的特征变量光谱强度与气相色谱测定的TFA真实含量进行关联, 建立食用植物油中TFA含量的定量预测模型。 研究结果表明, 多种归一化方法中, 有4种归一化方法均能提高PLS定量预测模型的性能, 其中Area normalization方法的效果最优; 经建模波数范围初选, 波数范围由686~2 301 cm-1缩减为737~1 787 cm-1, 确定较优的建模波数范围为737~1 787 cm-1; 经CARS方法筛选, 共有31个光谱变量被选择, 其选择的光谱变量主要分布在1 265, 1 303, 1 442及1 658 cm-1拉曼振动峰附近, 且974 cm-1拉曼振动峰两侧均有光谱变量被选择; 此外, CARS方法的PLS建模结果优于常用的无信息变量消除及连续投影算法。 由此可知, 激光拉曼光谱技术结合化学计量学方法检测食用植物油中的TFA含量是可行的。 归一化方法、 建模波数范围初选及竞争性自适应重加权采样(CARS)方法能有效提高TFA定量预测模型的预测精度和稳定性, 优化后的TFA定量预测模型的校正集及预测集的相关系数和均方根误差分别为0.949, 0.953和0.188%, 0.191%。 与未优化的预测模型相比, 预测均方根误差由0.361%下降为0.191%, 下降幅度为47.1%; 建模所用的变量数由683个下降为31个, 仅占原变量数的4.54%。
拉曼光谱 反式脂肪酸 食用植物油 竞争性自适应重加权采样 Raman spectra Trans fatty acid Edible vegetable oil CARS 
光谱学与光谱分析
2019, 39(12): 3821
作者单位
摘要
1 南昌航空大学测试与光电工程学院江西省光电检测技术工程实验室, 江西 南昌 330063
2 南昌航空大学无损检测技术教育部重点实验室, 江西 南昌 330063
提出一种基于激光诱导荧光(LIF)和主成分分析法相结合的植物油掺假检测与量化分析方法。采用LIF谱分别对橄榄油及花生油掺假煎炸油进行检测,分析不同掺杂浓度下的荧光谱强度和光谱峰值位置,并运用主成分分析法和偏最小二乘法模型对实验数据进行处理分析。结果表明位于500 nm波段的荧光强度随着掺假浓度的增加而增加,而位于670 nm波段的荧光峰强度会随着掺假浓度的增加而减小;利用荧光光谱并结合主成分分析法及偏最小二乘法模型对植物油进行了有效分类,并预测掺假浓度,预测误差小于2%。
光谱学 激光诱导荧光 植物油检测 主成分分析 偏最小二乘法 
中国激光
2019, 46(12): 1211002
作者单位
摘要
1 华南农业大学电子工程学院, 广东 广州 510642
2 华南农业大学园艺学院, 广东 广州 510642
叶绿素含量是衡量植物营养和病虫害发生情况的重要指标。 传统的分光光度法对植物叶片破坏性较大且无法实时、 快速、 无损地获取叶绿素含量。 新兴的利用叶绿素仪测量叶绿素相对含量(以下简称SPAD值)的方法不能定量获取实际含量。 光学辐射传输模型PROSPECT从生物物理、 化学的角度以及能量传输的过程出发, 定量描述了叶片色素、 水分、 结构参数等对叶片反射光谱的影响。 因此, 提出利用PROSPECT模型同时反演蔬菜叶片叶绿素含量和SPAD值, 实时、 快速、 无损、 定量获取植物叶片叶绿素的含量。 第一, 多次测量三种蔬菜叶片的反射光谱, 并用叶绿素仪测量SPAD值。 然后, 预处理光谱数据, 获得平均反射率光谱。 第二, 以欧式距离为评价函数, 利用PROSPECT模型对实测反射率光谱进行拟合。 拟合过程中三种蔬菜欧式距离最大为0.008 9, 最小为0.006 4, 平均为0.007 5, 表明该模型能够很好地拟合蔬菜叶片的反射率光谱。 第三, 根据拟合结果, 反演叶绿素含量和透射率光谱, 再根据透射率光谱获取叶片在940和650 nm波长处的光透过率, 计算叶片的反演SPAD值。 第四, 建立反演叶绿素含量、 反演SPAD值与实测SPAD值的关系模型。 结果表明: (1)利用该模型反演得到的叶绿素含量值与实测SPAD值有较好的线性关系, 其关系模型为: y=1.463 3x+16.374 3, 两者相关系数为0.927 1, 模型的决定系数为0.862, 均方根误差为2.11; (2)利用该模型反演得到的SPAD值与实测SPAD值之间线性关系较好, 其关系模型为: y=0.986 9x-0.668 3, 两者相关系数为0.845 1, 模型的决定系数为0.714 3, 均方根误差为3.380 2。 研究表明, 通过测量植物叶片的反射率光谱, 利用PROSPECT模型可以无损、 定量地获取蔬菜叶片的叶绿素含量和SPAD值。 该方法可推广至其他植物的叶绿素测量和实时监测, 为变量施肥、 精准种植提供可靠的数据支持。 研究结果对蔬菜生长态势的无损监测具有重要的意义。
高光谱 蔬菜叶片 叶绿素含量 SPAD值 反演 Hyperspectral Vegetable leaf Chlorophyll content SPAD value Inversion 
光谱学与光谱分析
2019, 39(10): 3256

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!