作者单位
摘要
中国工程物理研究院激光聚变研究中心,四川 绵阳 621900
熔石英光学元件在高能量密度的紫外脉冲激光辐照下往往极易出现后表面损伤,这严重影响了紫外高功率脉冲激光装置的可靠性。综合国内外相关研究进展,系统阐述了熔石英元件表面在高能量紫外脉冲激光辐照下的损伤特性,包括典型的初始损伤和损伤增长行为特征,介绍了熔石英元件表面缺陷的类型、分布特性和紫外脉冲激光诱导损伤的内在机制,并概述了常用的熔石英表面加工方法与缺陷控制技术。最后,介绍了熔石英表面缺陷无损检测新技术和抗损伤性能测试技术方面的研究进展。
激光光学 熔石英元件 紫外脉冲激光 缺陷 后表面损伤 
光学学报
2022, 42(17): 1714004
作者单位
摘要
1 上海理工大学 机械工程学院, 上海 200093
2 中国工程物理研究院 激光聚变研究中心, 绵阳 621900
为了提高熔石英元件的抗激光损伤能力, 采用基于氢氟酸刻蚀的湿法化学技术去除元件内的激光损伤诱因。利用不同的氢氟酸溶液处理经氧化铈抛光的熔石英元件, 并对元件的刻蚀速率、表面洁净度、粗糙度、透过率和激光损伤性能进行评价。研究结果表明, 与传统的静态刻蚀相比, 在质量分数为6%的氢氟酸刻蚀溶液中引入能量密度约为0.6 W/cm2的兆声能量对元件的溶解速率和激光损伤性能没有明显的提升作用; 化学刻蚀产生的沉积物对元件表面粗糙度和透过率均有不利影响, 且沉积物比例与所用的刻蚀液成分和浓度密切相关; 经质量分数6%或12%的纯氢氟酸溶液刻蚀(5±1) μm深度后, 熔石英元件的激光损伤阈值相比于未刻蚀元件提升了约1.9倍; 熔石英元件的激光损伤性能与表面粗糙度和透过率之间不是简单的线性关系, 但激光损伤阈值较理想的元件(>20 J/cm2@3ns)往往具有较光滑的表面, 即表面粗糙度<2 nm, 由此可以确定有利于熔石英元件激光损伤性能的刻蚀条件, 并获得元件表面粗糙度的控制指标。
激光损伤性能 熔石英 氢氟酸湿法刻蚀 刻蚀沉积物 表面粗糙度 laser damage performance fused silica optics HF-based etching etching-induced deposits roughness 
光学 精密工程
2020, 28(2): 382
作者单位
摘要
1 哈尔滨工业大学 机电工程学院, 哈尔滨 150001
2 中国工程物理研究院 激光聚变研究中心, 四川 绵阳 621900
对传统的静态刻蚀方法进行了改进,提出了一种光学元件兆声辅助化学刻蚀新方法,并对传统静态刻蚀与兆声辅助化学刻蚀效果进行了对比分析,综合考虑刻蚀液的配比、刻蚀时间、添加活性剂种类和功率对光学元件激光损伤阈值的影响,通过正交设计实验优选出最佳的兆声辅助化学刻蚀工艺参数。结果表明:兆声清洗对各类杂质的去除效果要明显好于手工擦洗,兆声辅助化学刻蚀比传统的静态刻蚀有更高的刻蚀速率,在兆声的作用下刻蚀液能够进入到传统静态刻蚀难以进入的微裂纹中,对微裂纹等缺陷的刻蚀效果更为明显,能够将熔石英元件激光损伤阈值进一步提高。
化学刻蚀 亚表面缺陷 激光损伤阈值 熔石英元件 兆声辅助刻蚀 chemical etching subsurface defects laser damage threshold fused silica optics megasonic assisted etching 
强激光与粒子束
2015, 27(11): 112010
作者单位
摘要
1 哈尔滨工业大学 机电工程学院, 哈尔滨 150001
2 中国工程物理研究院 激光聚变研究中心, 四川 绵阳 621900
根据工件与抛光盘的相对运动关系及熔石英元件抛光加工材料去除模型,系统分析了转速比和偏心距等参数对材料去除函数的影响。通过理论分析和抛光加工实验,研究了不同工艺参数对低频段面形精度的影响规律。利用高分辨率检测仪器对熔石英元件低频面形误差进行了检测,优选出较佳的抛光工艺参数组合,并进行了相应的实验验证,提出了提高光学元件抛光加工低频面形质量的相应措施。
熔石英元件 抛光加工 工艺参数 面形误差 表面质量 fused silica optics polishing process process parameters surface accuracy surface quality 
强激光与粒子束
2015, 27(4): 042001
作者单位
摘要
哈尔滨工业大学 机电工程学院, 哈尔滨 150001
在磨削、研磨和抛光加工过程中产生的微裂纹、划痕、残余应力等亚表面缺陷会导致熔石英元件抗激光损伤能力下降,如何快速、准确地检测亚表面损伤成为光学领域亟待解决的关键问题。采用HF酸蚀刻法、角度抛光法和磁流变斜面抛光法对熔石英元件在研磨加工中产生的亚表面缺陷形貌特征及损伤深度进行了检测和对比分析,结果表明,不同检测方法得到的亚表层损伤深度的检测结果存在一定差异,HF酸蚀刻法检测得到的亚表面损伤深度要比角度抛光法和磁流变斜面抛光法检测结果大一些。且采用的磨粒粒径越大,试件表面及亚表面的脆性断裂现象越严重,亚表面缺陷层深度越大。
熔石英元件 亚表面缺陷 研磨加工 损伤性检测 亚表面裂纹 fused silica optics subsurface defects lapping destructive detection subsurface cracks 
强激光与粒子束
2014, 26(12): 122008

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!