作者单位
摘要
中国科学院长春光学精密机械与物理研究所 中国科学院空间光学系统在轨制造与集成重点实验室,长春 130033
为降低子镜促动器负载,保证拼接式主镜的面形精度和稳定性,针对子镜组件进行了一体优化设计。根据子镜组件设计要求初步确定了子镜的结构形式,基于反射镜背部三点支撑方案提出了一种开槽横梁多轴柔性支撑结构。为解决组件一体优化设计中引入变量过多,不易收敛的问题,设计了一种基于多岛遗传与梯度优化的组合优化算法。建立了以结构重量、面形精度为目标的优化模型,对子镜组件进行了一体设计、工程分析及试验验证。工程分析结果表明:子镜组件结构重量为1.74 kg,XYZ三个方向上的基频均在400 Hz以上,面形精度均控制在5 nm以内。最后对子镜面形进行了检测,结果显示:子镜面形精度的RMS值为0.019λλ=632.8 nm),满足优于λ/50的设计要求,验证了设计和分析的准确性,表明针对子镜组件的一体优化设计方法是合理的,为空间相机反射镜支撑结构组件级一体化设计提供了新思路。
拼接式主镜 面形精度 子镜组件 组合优化算法 一体设计 工程分析 面形检测 Splicing primary mirror Surface figure error Primary mirror segment assembly Combinatorial optimization algorithm Integrated design Engineering analysis Surface test 
光子学报
2022, 51(4): 0412008
邓婷 1,2刘锋伟 1,*覃蝶 1,2徐燕 1[ ... ]陈强 1
作者单位
摘要
1 中国科学院光电技术研究所, 四川 成都 610209
2 中国科学院大学, 北京 100049
针对拼接干涉测量技术除了引入拼接误差,还将引入机械运动误差的问题,为此提出一种X射线反射镜的非零位干涉测量方法,无需拼接便可实现零回程误差的高精度干涉测量。利用一块高精度平面镜来标定干涉系统在全视场范围内的回程误差。通过将待测非球面镜划分成多个子孔径,每个子孔径可近似看作一个平面,这样可以从标定数据库中找到该子孔径所对应的回程误差,通过简单的矩阵拼接可得到整个待测非球面镜的回程误差。以X射线椭圆柱面反射镜为例进行实验,实现X射线椭圆柱面反射镜非零位干涉测量面形的回程误差有效标定,相比于拼接干涉测量方法二者结果一致性较好,证实所提方法的正确性。
X射线光学 X射线镜 面形检测 回程误差 Zernike多项式 
光学学报
2022, 42(4): 0434001
作者单位
摘要
1 南京理工大学 先进发射协同创新中心, 江苏 南京 210094
2 南京理工大学 电子工程与光电技术学院, 江苏 南京 210094
液晶盒表面面形的质量会影响空间光调制器的性能。为了精确测量液晶盒表面面形, 提出了短相干载频干涉方法。利用短相干扩展光源进行照明, 产生的参考光和测试光之间形成定域干涉, 通过控制参考面和液晶盒表面之间的倾角, 引入合适的载频, 得到待测载频干涉条纹; 同时空液晶盒空气层上下表面干涉, 形成背景干扰条纹, 从而在CCD相机中采集到混叠有一组干扰条纹的单幅载频干涉图。通过空间傅里叶变换方法滤除背景和干扰条纹的频率信息, 提取并恢复待测条纹包含的面形数据。实验检测了两块玻璃基片错位粘合制成的液晶盒表面面形, 解算出波面峰谷值PV为8.286λ, 波面均方根值RMS为1.782λ。使用该方法和ZYGO干涉仪进行的对比实验中PV值和RMS值分别相差0023λ和0.004λ, 两种测量方法得到的结果一致。该方法能够克服多表面干涉的问题, 实现液晶盒表面面形的精确测量。
液晶盒 短相干光 傅里叶变换 面形检测 liquid crystal cell low coherence light Fourier transform surface test 
液晶与显示
2020, 35(2): 108
作者单位
摘要
1 南京理工大学电子工程与光电技术学院, 江苏 南京 210094
2 中国科学院上海技术物理研究所, 上海 200083
折反射式零位补偿检验是一种综合了Offner折射式和Maksutov反射式补偿检验优点的凹非球面检验 方法,补偿能力强,检测光路紧凑。大口径和大相对孔径非球面检验是制约其加工质量提高的难题,针对口径为4 m、 偏心率为1、顶点曲率半径为16 m的大口径凹抛物面反射镜,设计了折反射式零位补偿器。基于三级像差理论对补偿器的初始结构进行了 规划和计算,采用Zemax软件对初始结构参数进行了优化,得出了补偿器的最终结构,检验光路轴向尺寸约12 m,系统优化后剩余波相差为0.005λ。设计和仿真结果表明,这种折反射式零位补偿器对大口径凹非球 面镜的加工检测是非常有利的。
几何光学 大口径非球面检验 折反射式零位补偿检验 三级像差理论 光学系统设计 geometric optics large-aperture aspheric surface test catadioptric null compensation test third-order aberration theory optical system design 
量子电子学报
2017, 34(4): 394
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
提出了一种基于检测光路光线追迹的畸变校正方法。通过对面形图边界的提取和分析确定图像中畸变的对称中心位置和对检测波前的采样间隔,利用光线追迹建立镜面到检测结果的对应关系,从而校正面形分布的畸变。针对某大口径离轴三反光学系统的730 mm×268 mm 离轴非球面主镜的补偿检测,完成了面形图的畸变校正,校正前后二值化面形图与二值化镜面图的标准化互相关函数最大值从0.925提升至0.985,校正效果明显。
测量 离轴非球面检测 畸变校正 光线追迹 补偿检测 
中国激光
2015, 42(10): 1008001
作者单位
摘要
中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
为了验证相位差异波前检测器演示系统利用自带光源独立完成波前检测任务的能力,搭建了基于相位差异法检测镜面面形的实验平台。测试时在焦面和离焦面上同时采集短曝光图像,在已知离焦量的前提下解算出波前相位分布并恢复出目标,从而实现对大镜面像差的估计。为了进一步验证相位差异测量方法的准确性,对相位差异法与高精度的ZYGO干涉仪得到的测量结果进行了比较分析。实验结果表明: 两种方法获得的面形误差分布及误差的峰谷值(PV)和均方根值(RMS)一致性很好,而波前RMS的测量精度达到了2.83/1 000λ。得到的结果表明提出的相位差异法能有效地检测出镜面的像差,且准确性很好。
镜面面形 面形检测 相位差异法 泽尔尼克多项式 像差 mirror surface surface test phase diversity method Zernike polynomial aberration 
光学 精密工程
2015, 23(4): 975
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室, 吉林 长春 130033
2 中国科学院大学, 北京 100049
针对F 数为4 的高次非球面,设计了一套基于平行光束照射的高精度补偿器。系统工作波长为632.8 nm,设计残差为0.0018 λ 。提出了求解两片检测透镜组成补偿器初始结构的新方法。该方法合理假设补偿器部分结构参数,通过判断补偿器与非球面的Seidel 系数之和最小获得未知参数。比较非球面在补偿器第一面位置处的高斯像高与假设的入射平行光高度,通过MATLAB 迭代计算得到高度差小于预设误差,进而确定平行光入射高度。重新复算得到最终的初始结构。最后将迭代计算得到的各个面Seidel 系数和ZEMAX 给出的结果进行比较,证实了该方法的可靠性。
光学设计 非球面检测 补偿器 迭代 Seidel 系数 
激光与光电子学进展
2014, 51(7): 072203
任寰 1,2,*马力 1,2刘旭 2何勇 1[ ... ]朱日宏 1
作者单位
摘要
1 南京理工大学 电子工程与光电技术学院, 江苏 南京 210094
2 中国工程物理研究院 激光聚变研究中心, 四川 绵阳 621900
为了消除平行平板类光学元件的多表面干涉效应对元件面形测量的影响, 提出了基于波长移相调谐技术与傅里叶变换原理的多表面干涉条纹检测技术。首先, 根据波长移相原理和被测元件的厚度, 按照推算出的被测腔长与元件厚度间的比例关系正确摆放被测元件的测试位置。然后, 通过波长移相技术采集一组干涉图。最后, 对这组多表面干涉图进行离散傅里叶变换, 提取带有被测元件前后表面面形的频率信息以及厚度变化的频率信息, 通过重构算法得到准确的面形信息和厚度信息。实验结果表明: 与传统的13步移相算法相比, 得到的前表面PV值和RMS值分别相差0.003和0.001, 而后表面PV值与RMS值分别相差0和0.001。这些结果基本满足平行平板类光学元件面形的高精度测量与洁净测量的要求。
光学元件 面形检测 多表面干涉检测 波长移相 平行平板 傅里叶变换 optical element surface test multiple surface interferometry wavelength-tuned phase shifting parallel plate Fourier transform 
光学 精密工程
2013, 21(5): 1144

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!