作者单位
摘要
河北大学物理科学与技术学院, 河北省光电信息材料重点实验室, 河北 保定 071002
Trichel脉冲放电为电晕放电中一种常见的不稳定现象。 为了进一步揭示Trichel脉冲的放电特性和放电机理, 本文利用针板放电结构, 在气压为600 Pa的空气环境下研究了Trichel脉冲放电的光学特性。 在平均电流为20~300 μA范围内, 放电分为Trichel脉冲放电模式和正常辉光放电模式。 在Trichel脉冲放电模式下, 平均极间电压随着平均电流的增高而降低; 正常辉光放电模式下, 平均极间电压随平均电流的增高基本保持不变。 实验拍摄并得到了不同平均电流时的发光图像, 从阴极针尖到阳极平板区域分为负辉区、 法拉第暗区、 正柱区和阳极辉区。 随着平均电流的增加, 负辉区、 正柱区以及阳极表面的发光增强, 负辉区体积基本保持不变, 法拉第暗区长度逐渐增加, 正柱区长度逐渐缩小。 在Trichel脉冲消失时, 负辉区发光向阴极针尖收缩, 正柱区向阳极板贴近, 并且两个区域发光明显增强。 利用光谱仪在300~800 nm波长范围内测量得到了不同平均电流时的发射光谱。 其中在300~450 nm波长范围内的发射光谱强度较高, 为氮分子的第二正带系(C3Πu→B3Πg)和氮分子离子的第一负带系(B2Σ+u→X2Σ+g); 在650~800 nm附近发射光谱较弱, 为氮分子的第一正带发射谱(B3Πg→A3Σ+u)。 在此基础上, 根据N2(C3Пu→B3Пg )第二正带系发射光谱拟合得到了不同平均电流时氮分子的振动和转动温度。 结果表明, 分子振动温度和转动温度均随平均电流的增加而增加, 分子振动温度在3 900~4 500 K, 分子转动温度在430~450 K。 同时利用氮分子离子谱线391.4 nm和氮分子第二正带系谱线394.2 nm强度比计算得到了不同平均电流时的电场强度。 随着平均电流的增加, 电场强度升高, 在145~200 kV·m-1范围。 当Trichel脉冲消失时, 针尖附近分子振动温度和电场强度出现较为明显的升高。 此现象表明针尖附近的电子能量和电子密度随着脉冲的消失也出现了明显的升高。
Trichel脉冲放电 发射光谱 分子振动温度 电场强度 Trichel pulse discharge Emission spectra Molecular vibrational temperature Electric field 
光谱学与光谱分析
2023, 43(10): 3041
作者单位
摘要
太原科技大学应用科学学院, 山西 太原 030024
基于cc-pVQZ基组,使用内收缩多参考组态相互作用方法计算了BeX+ (X=H,D,T)离子 第一解离极限Be+(2S) + X(2S)和第二解离极限Be+ (2P) + X(2S)的6个电子 态 (X1Σ+, a3Σ+, A1Σ+, b3Π, B1Π, c3Σ+) 的势能曲线。根据势能曲线的 计算结果,利用LEVEL程序求解一维的径向薛定谔方程,获得了相应电子态的振-转能级、A1Σ+-X1Σ+之 间的Franck-Condon (F-C) 因子以及振动能级辐射寿命。利用Breit-Pauli算符计算了b3Π和c3Σ+态自旋-轨道耦 合分裂。分析了BeH+离子A1Σ+态在振动温度为2500、5000、7500、10000 K时的玻尔兹曼布居分布。另外, 模拟了振动温度为10000 K, 转动温度分别为500、1000、1500、2000 K时, A1Σ+-X1Σ+电子系 统Δν=-2和Δν=-3谱带的转动谱线强度分布。
光谱学 辐射寿命 多参考组态相互作用方法 自旋-轨道耦合 振-转温度 spectroscopy radiative lifetimes multiconfiguration-reference configuration interac spin-orbital coupling ro-vibrational temperature 
量子电子学报
2020, 37(1): 1
作者单位
摘要
1 河北大学物理科学与技术学院, 河北 保定 071002
2 河北农业大学理学院, 河北 保定 071001
为了进一步揭示空心阴极放电中放电模式的转换机制, 特别是空心阴极放电过程中自脉冲的形成机理, 利用柱型空心阴极放电结构, 在空气环境下研究了放电处于不同模式时的发光特性。 测量得到了不同放电模式下的伏安特性曲线、 放电发光图像、 自脉冲阶段的脉冲波形等。 实验结果表明随着放电电流的增加放电分为汤生放电模式、 自脉冲放电模式、 正常辉光放电模式和反常辉光放电模式。 虽然所用电源为直流电源, 但在自脉冲放电阶段电流和电压随时间呈周期性变化。 实验结果表明在不同的放电模式下具有不同的发光特性。 在由汤生放电转换为自脉冲放电模式和由自脉冲模式转换为正常辉光放电模式过程中, 放电腔的径向中心处和轴向孔口附近均存在光强的突变。 实验同时在200~700 nm范围内测量得到了不同电流时的发射光谱。 结果表明发射光谱主要集中在330~450 nm, 主要包括氮分子的第二正带系(C3Πu→B3Πg )和氮分子离子的第一负带系(B2Σ+u→X2Σ+g)。 其中氮分子离子第一负带系具有较强的发射光谱。 由于B2Σ+u激发电位较高, 因此该谱带较强发射光谱的存在表明空心阴极放电较其他放电形式更容易获得高激发态粒子和高能量电子。 在650~700 nm附近存在一弱的发光谱带, 主要为氮分子的第一正带发射谱(B3Πg→A3Σ+u)。 在此基础上根据双原子光谱发射理论, 结合氮分子第二正带系的三组顺序组带: Δν=-1, -2和-3, 利用玻尔兹曼斜率法计算得到了不同放电模式下氮气的分子振动温度。 结果表明在实验电流范围内分子振动温度在3 300 K左右, 随着电流的增加而升高, 并且在自脉冲消失时存在一突变迅速增强。 由于电子能量、 电子密度与分子振动温度密切相关, 因此该结果也表明随着放电电流的增加电子平均能量和电子密度不断增加, 当脉冲消失时, 电子平均能量和电子密度出现跃变升高。 最后, 对空心阴极放电中自脉冲的形成机理进行了讨论, 结果表明自脉冲放电源于放电模式的转换。
空心阴极放电 自脉冲 发射光谱 分子振动温度 Hollow cathode discharge Self-pulse Emission spectrum Molecular vibrational temperature 
光谱学与光谱分析
2019, 39(11): 3377
作者单位
摘要
1 太原科技大学 应用科学学院, 太原 030024
2 中北大学 仪器科学与动态测试教育部重点实验室, 太原 030051
为了研究CN自由基B2Σ+~X2Σ+光谱及温度随着条件的变化规律, 采用激光诱导击穿光谱的方法, 击穿空气环境下的高纯石墨产生CN自由基, 并用高分辨率光谱仪测量其B2Σ+~X2Σ+的发射光谱, 改变激光能量和激光焦点位置研究不同条件下的CN自由基光谱。结果表明, 激光能量从30mJ调谐到50mJ, 增加步长为5mJ, 光谱强度随着激光能量的增大变强; 单脉冲能量为50mJ时光谱强度达到最大值; 此外, 测量光谱在样品上表面到焦点距离为8mm时, 信噪比达到最大值; 利用LIFBASE软件对光谱数据进行拟合, 得出CN自由基的振动温度的量级约为104K, 转动温度约为4000K; CN自由基的振动温度随着距离的增加整体呈现下降的趋势, 而转动温度呈现上升的趋势。这些结果对研究宇宙星体和探索高温化学反应有重要作用。
激光光学 激光诱导击穿光谱技术 CN自由基 振动温度 转动温度 laser optics laser-induced breakdown spectroscopy technology CN radical vibrational temperature rotational temperature 
激光技术
2019, 43(5): 719
冯建宇 1,2,*董丽芳 1,2魏领燕 1,2刘莹 1,2牛雪姣 1,2
作者单位
摘要
1 河北大学物理科学与技术学院, 河北 保定 071002
2 河北省光电信息材料重点实验室, 河北 保定 071002
在空气与氩气组成的混合气体的介质阻挡放电实验中, 采用发射光谱法, 首次研究了放电气隙分别为: 1, 4和2 mm三层放电气隙中的放电丝的光谱特性。 这与以往的单层放电气隙或者是双层放电气隙中的放电丝在光谱特性方面有很大的不同。 实验通过采集氮分子第二正带系(C3Πu→B3Πg)谱线, 计算出不同放电气隙中的放电丝的分子振动温度。 利用氮分子离子3914 nm谱线强度与氮分子3941 nm谱线的强度之比得到不同放电气隙中放电丝的电子平均能量。 增加氩气在混合气体中的比例, 得到分子振动温度及电子平均能量随着氩气含量增加的变化趋势。 实验结果表明: 在同一氩气含量下, 分子振动温度从小到大的顺序为: 2 mm放电气隙, 1 mm放电气隙, 4 mm放电气隙。 电子平均能量从小到大的顺序为: 4 mm放电气隙, 2 mm放电气隙, 1 mm放电气隙。 三层放电气隙中放电丝的分子振动温度及电子平均能量均随着氩气含量的增加而减小。
介质阻挡放电 分子振动温度 电子平均能量 Dielectric barrier discharge Molecule vibrational temperature Electron average energy 
光谱学与光谱分析
2017, 37(2): 387
作者单位
摘要
河北大学物理科学与技术学院, 河北省光电信息材料重点实验室, 河北 保定 071002
在空气与氩气按比例混合组成的气体放电中, 研究了由中心点和六边形晕组成的六边形晕斑图。 从照片中观察六边形晕斑图结构, 发现中心点和六边形晕的亮度有明显的差异, 说明中心点和六边形晕可能处的等离子体状态不同。 利用发射光谱法, 详细研究了该六边形晕斑图结构的中心点和六边形晕的等离子体参数随压强的变化关系。 实验根据氮分子第二正带系(C3Πu→B3Πg)谱线计算了中心点和六边形晕的分子振动温度; 通过氮分子离子(391.4 nm) 与氮分子(394.1nm)谱线强度比, 反映中心点和六边形晕的电子平均能量; 利用氩原子696.5 nm(2P2→1S5)谱线的展宽, 研究了电子密度。 实验结果表明: 六边形晕斑图主要范围是氩气含量从60%~75%、 压强从30~46 kPa。 在相同的压强条件下, 六边形晕比中心点的分子振动温度、 电子平均能量均要高。 随着压强从30 kPa逐渐升高到46 kPa, 中心点和六边形晕的分子振动温度、 电子平均能量是逐渐增大的。 在相同的压强条件下, 六边形晕比中心点的谱线展宽要大, 且随着压强的升高而增加, 表明电子密度随着压强的增大而升高。 六边形晕和中心点的等离子体的状态不同, 说明二者放电机制上的差异。 进一步采用高速照相机对斑图的电流脉冲进行分脉冲瞬时拍摄, 发现中心点是由先放电的体放电形成, 而六边形晕是由放电晚于体放电的沿面放电形成。
介质阻挡放电 六边形晕斑图 分子振动温度 电子平均能量 电子密度 高速照相机 Dielectric barrier discharge The spot-halo hexagon pattern Molecule vibrational temperature Electron average energy Electron density The high speed camera 
光谱学与光谱分析
2016, 36(6): 1877
作者单位
摘要
北京应用物理与计算数学研究所,北京 100094
氮气分子的振动自由度在大气放电低温等离子体中会被高度激发。从振动能级的简谐振子模型和Boltzmann分布近似出发,研究重复频率脉冲放电中振动温度的变化行为。结果表明,决定重频条件下振动温度的主要过程是电子碰撞振动激发和振动-平动弛豫,而在振动能级高度激发的情形下其与氧原子的化学反应也会产生影响。对于振动激发过程,通过跃迁反比相似率推导出的特征弛豫时间与动理学模型符合较好。在振动-平动弛豫中占主导贡献的为干燥大气中的氧原子或潮湿大气中的水分子。当氧原子数密度为1014 cm-3时,若初始振动温度在5000 K,在化学反应过程中振动能量的特征弛豫时间在0.1~1 s量级。
大气放电 振动温度 弛豫时间 air discharge vibrational temperature relaxation time 
强激光与粒子束
2016, 28(3): 035001
作者单位
摘要
河北大学 物理科学与技术学院, 河北 保定 071002
采用高速录像机和光谱仪,研究了在双水电极介质阻挡放电装置中首次得到的由长短交替的棒状放电结构组成的栅栏斑图。通过观察20 μs曝光录像照片发现栅栏斑图由体放电和沿面放电组成。采用发射光谱法,利用N2第二正带系(C3Πu→B3Πg)的发射谱线和Ar Ⅰ(2P2→1S5)谱线的展宽,分别测量和比较了不同体放电和沿面放电不同位置处的分子振动温度和电子密度。结果发现:斑图中具有较强沿面放电的体放电比具有较弱沿面放电的体放电拥有较高的分子振动温度和电子密度;在沿面放电的方向上,沿面放电的分子振动温度和电子密度均逐渐降低。理论分析证明,壁电荷在狭缝内的非等量分布是影响栅栏斑图形成的主要因素。
介质阻挡放电 栅栏发光斑图 分子振动温度 电子密度 dielectric barrier discharge fence pattern molecular vibrational temperature electron density 
发光学报
2015, 36(12): 1440
作者单位
摘要
1 河北农业大学理学院, 河北 保定071001
2 河北大学物理科学与技术学院, 河北 保定071002
大气压均匀放电等离子体在工业领域具有非常广泛的应用前景, 它是利用直流电源激励的空心针-板放电装置, 以氩气为工作气体在大气压空气中产生均匀稳定的放电。 对氩气流量和气隙间距对辉光放电发光特性的关系进行了研究, 结果表明放电所产生的等离子体柱连接两个电极, 发光较为均匀(观察不到放电丝)。 在板电极附近放电等离子体柱直径最大, 最大直径随着电流和气流的增大而增大。 放电伏安特性研究发现, 与低气压辉光放电相类似, 两电极间的电压随着电流的增大而减小, 并且随气流和气隙间距的增大而增大。 对该大气压直流均匀放电在扫描范围为330~450 nm的光学发射光谱进行分析, 获得了放电等离子体的分子振动温度和谱线强度比I391.4/I337.1随氩气流量和气隙间距的变化关系。 I391.4/I337.1均随流量和气隙间距的增大而降低。 对等离子体柱的I391.4/I337.1沿气流方向(等离子体柱轴向)进行了空间分辨测量, 并进行了定性分析, 结果表明, 振动温度及电子平均能量随着远离空心针口距离的增大而增大。 这些结果对大气压辉光放电在工业中的应用具有重要意义。
大气压辉光放电 伏安特性 发射光谱 分子振动温度 Atmospheric pressure glow discharge Voltage-current characteristics Optical emission spectrum Vibrational temperature 
光谱学与光谱分析
2015, 35(9): 2473
作者单位
摘要
河北省光电信息材料重点实验室, 河北大学物理科学与技术学院, 河北 保定 071002
在空气与氩气组成的混合气体放电中, 首次研究了由中心点和外层晕组成的单丝。 从照片中观察单丝结构, 发现混合气体中氩气所占的比例越重, 单丝的直径随之越小, 同时中心点和外层晕的亮度有明显的差异, 说明中心点和外层晕可能处于不同的等离子体状态。 实验对单丝结构进行了光学时空分辨测量, 研究了中心点和外层晕两层结构的微观特性。 利用发射光谱法, 详细地研究了该单丝结构的中心点和外层晕的等离子体参数随氩气含量的变化关系。 实验根据氮分子第二正带系(C3Πu→B3Πg)谱线计算了中心点和外层晕的分子振动温度; 通过氮分子离子N+2(391.4 nm) 第一负带系谱线与氮分子N2(394.1nm)谱线强度比, 反映中心点和外层晕的电子平均能量随氩气含量的变化关系; 利用氩原子763.2 nm(2P6→1S5)和772.077 nm(2P2→1S3)两条谱线的相对强度比法, 估算了中心点和外层晕的电子激发温度。 结果表明: 中心点的光信号对应着第一个电流脉冲, 且其光信号较弱; 而外层晕的光信号同时对应着第一个和第二个电流脉冲, 且其光信号较强。 在相同的氩气含量条件下, 外层晕比中心点的分子振动温度、 电子平均能量以及电子激发温度均要高。 随着氩气含量从30%逐渐增大到50%, 中心点和外层晕的分子振动温度是逐渐减小的, 而电子平均能量和电子激发温度均是逐渐增大的。
介质阻挡放电 单丝 分子振动温度 电子平均能量 电子激发温度 Dielectric barrier discharge Single filament Molecule vibrational temperature Average electron energy Electron excitation temperature 
光谱学与光谱分析
2015, 35(3): 591

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!