刘经佑 1,2,*雷枫 1,2
作者单位
摘要
1 淮阴师范学院物理与电子电气工程学院, 江苏 淮安 223300
2 淮安市微纳光学成像重点实验室, 江苏 淮安 223300
基于透过式低相干光学干涉系统,提出了一种精密调节光程的方法,以测量透镜的中心厚度。利用一对楔形棱镜,将接近垂直于光轴方向的低精度直线移动转化为沿光轴方向的高精度直线移动,实现了高精度的光程调节。楔形棱镜的楔角角度决定了光程差的调节精度,楔角角度越小,光程差调节精度越高。使用5°30'的楔角棱镜组和精度为5 μm的直线移动装置,实现了光轴方向精度小于0.5 μm的移动调节,测量透镜中心厚度的精度在0.9 μm以内。所提方法提高了干涉条纹的对比度,可以测量各种类型透镜的中心厚度,也便于扩大测量厚度范围。
测量 透镜中心厚度 低相干光干涉 楔形棱镜组 光程补偿 
激光与光电子学进展
2019, 56(12): 121201
作者单位
摘要
上海理工大学 教育部微创医疗器械工程研究中心, 上海 200093
为测量透明容器内液体的折射率, 建立了基于容器内表面反射率测量的低相干技术实验系统。系统采用宽带低相干半导体激光光源和改进的迈克尔逊干涉仪, 将装有待测液体的容器放入测量臂光路中, 调节参考臂的光程, 使由容器前壁内表面反射光的光程与来自参考臂反射光的光程相等, 出现干涉现象。捕捉并记录下此干涉信号, 并从中求出容器前壁内表面反射光的强度, 再结合菲涅尔公式及反射率的定义, 即可求出待测液体的折射率, 其测量精度与阿贝折射仪相当。方法能够方便、快捷、准确地测出容器内液体的折射率, 可用于食品、生物医学检验等领域内液体浓度或折射率的实时非接触监测。
液体折射率 低相干光干涉 反射率 透明容器 liquid refractive index optical low coherence interference reflectivity transparent container 
光学技术
2019, 45(2): 159
作者单位
摘要
上海理工大学上海介入医疗器械工程研究中心, 上海 200093
为检测透明容器内表面是否存在污染物, 建立了基于容器壁内表面反射的低相干光干涉测量系统。实验采用宽带低相干半导体激光光源和改进的迈克尔逊干涉仪。将测量臂光路对准透明容器, 并调节参考臂的光程, 使容器内表面反射光的光程与参考臂反射光的光程相等, 并出现干涉现象, 捕捉并记录此动态干涉信号。经 MATLAB软件处理并提取此信号, 根据干涉光强度的不同即可辨别透明容器内是否存在污染物。该检测法可为生物医学、食品质检等领域检测透明容器内表面污染物提供一种方便快捷的新方法。
污染物 内表面 低相干光干涉 contaminants inner surface optical low coherence interference 
光学仪器
2019, 41(1): 1
金超群 1,2,*杨宝喜 1,2胡小邦 1张方 1[ ... ]黄惠杰 1
作者单位
摘要
1 中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800
2 中国科学院大学, 北京 100049
阐述了一种基于低相干光干涉技术的透镜中心厚度的测量方法, 并设计了腔式测量结构对未知折射率的材料进行中心厚度测量。测量系统为包括低相干测量和激光测距的全光纤结构。低相干测量结构参考臂和激光测距结构参考臂的共光路设计降低了环境因素的影响, 提高了测量稳定性, 并利用七步相移法实现对干涉信号的定位和提取。另外, 利用低相干测量方法中的平衡差分结构去除了干涉信号中的直流项, 同时提高了弱信号的定位精度。实验结果表明, 该腔式测量结构对殷瓦合金标准块的测量精度优于0.5 μm, 该系统能够实现对透镜中心厚度的高精度测量, 满足高精密光学系统的测量要求。
测量 透镜中心厚度 低相干光干涉 腔式测量结构 平衡差分测量结构 
中国激光
2017, 44(6): 0604002
师中华 1,2,*杨宝喜 1,2胡小邦 1金超群 1,2[ ... ]黄惠杰 1,2
作者单位
摘要
1 中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800
2 中国科学院大学, 北京 100049
描述了利用低相干干涉技术实现光学镜面间距测量的方法。首先,采用微机电系统(MEMS)光开关多通道延迟结构实现测量范围的多倍增,然后通过共光路激光测距结构实现扫描反射镜的位移测量,再利用包络提取算法对低相干干涉信号的零光程差位置进行定位,最后实现镜面间距的高精度测量。实验测量系统为全光纤结构,利用该系统完成了对因瓦合金(Invar)标准块、大间距光学结构和光学镜组的镜面间距测量,在导轨扫描量程为300 mm的条件下,实现了在0.02~550 mm范围内的镜面间距测量,测量精度优于0.5 μm。该套系统可用于光刻机曝光系统、航测镜头、激光谐振腔等高性能精密光学系统的装调与检测。
测量 镜面间距 低相干光干涉 激光测距 MEMS光开关 
光学学报
2016, 36(6): 0612001
作者单位
摘要
1 中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800
2 中国科学院大学, 北京 100049
透镜作为光学系统中最基本的光学元件,其中心厚度的加工误差和装配精度将直接关系到整个光学系统的成像质量.对镜面间距非接触测量技术进行了研究,重点介绍了图像法、轴向色散法、差动共焦法、低相干光干涉法等方法的测量原理和研究进展,指出了这些方法的优缺点和适用范围.这些方法都能满足一般光学系统的精度要求,其中低相干光干涉法测量精度最高,轴向色散法、差动共焦法次之,图像法测量精度最低.对光学镜面间距测量技术的发展趋势进行了论述.
测量 镜面间距 图像法 轴向色散法 差动共焦法 低相干光干涉 
激光与光电子学进展
2015, 52(4): 040004
作者单位
摘要
清华大学电子工程系信息技术国家实验室,集成光电子学国家重点实验室, 北京 100084
低相干光干涉法通过测量宽谱光通过待测器件之后的相位变化得到其相对延时量。采集宽谱光时域干涉数据,利用傅里叶变换提取出频域相位信息后再进行相位展开、多项式拟合处理,所得相位曲线对频率求导可得待测延时曲线。延时测量误差来源于干涉信号强度误差和纯相位误差。理论分析和仿真计算表明,延时误差与相位误差成正比;强度噪声引起的相位误差与噪声强度成正比,且该类噪声可通过曲线拟合算法得到有效抑制。实验表明,温度等环境因素引起的纯相位误差是延时测量误差的主要因素。实验上,对约19 m光子晶体光纤于1540~1560 nm波段的相对延时进行了测量,达到了0.14 ps的精度。
测量 低相干光干涉 延时误差 傅里叶变换 多项式拟合 
中国激光
2011, 38(1): 0108003

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!