作者单位
摘要
西安理工大学 自动化与信息工程学院,西安 710048
采用双掺杂方法,实现了具有高陷阱浓度的有机光电倍增探测器.在优化的单掺杂(活性层为P3HT:PC61BM:C60)器件基础上,保持C60的最优掺杂比例不变(1.0 wt%),同时掺杂C60和DDQ两种电子陷阱,研究不同DDQ掺杂浓度对P3HT:PC61BM活性层中陷阱浓度和探测器光电性能的影响.结果表明,双掺杂C60:DDQ活性层的最大掺杂浓度为1.5 wt%,与单掺杂C60活性层(最大掺杂浓度为1.0 wt%)相比提高了约1.5倍;双掺杂C60:DDQ器件的陷阱浓度为2.02×1018 cm-3,与单掺杂C60器件(陷阱浓度为5.83×1017 cm-3)相比提高了约3.5倍;在-2 V偏压下,双掺杂C60:DDQ器件的外量子效率高达2015.32%,比单掺杂C60器件(外量子效率为202.60%)提高了约10倍.采用双掺杂方法可以大大提高陷阱浓度,从而实现活性层的高浓度陷阱掺杂.
有机光电倍增探测器 双掺杂 陷阱浓度 掺杂浓度 外量子效率 Organic photomultiplier detector Double doping Trap concentration Doping concentration External quantum efficiency 
光子学报
2020, 49(10): 1025001
作者单位
摘要
1 西安邮电大学 电子工程学院, 西安 710121
2 中国科学院西安光学精密机械研究所 瞬态光学与光子技术国家重点实验室, 西安 710119
将Yb3+作为协助发光的敏化剂,Tb3+和Tm3+作为发光中心的激活剂分别加入到基质氟化钇钠中,通过水热合成法分别制成不同掺杂浓度的NaYF4:Yb3+/Tb3+和NaYF4:Yb3+/Tm3+双掺杂氟化物纳米发光材料,并通过扫描电子显微镜、X射线衍射以及荧光光谱等手段分别对NaYF4:Yb3+/Tb3+和NaYF4:Yb3+/Tm3+双掺杂氟化物材料纳米颗粒的形貌及其发光特性进行了研究.实验结果表明:系列样品的X射线衍射图谱衍射峰与标准卡片吻合得很好,实验浓度范围内Yb3+/Tb3+和Yb3+/Tm3+共掺没有改变NaYF4的晶体结构.实验得到了该材料在980 nm激光激发下的上转换发光光谱并分析了该材料的上转换发光机理,NaYF4:Yb3+/Tb3+在980 nm激光激发的情况下出现的蓝光,绿光以及红光,分别对应于5D47F65D47F55D47F1的辐射跃迁;NaYF4:Yb3+/Tm3+在980 nm光源激发下出现强的480 nm的蓝光,对应的是1G43H6的电子跃迁能级带,在660 nm强的红光发射谱带,对应的是1G43F4能级跃迁辐射光.
氟化物 纳米发光材料 双掺杂 上转换发光 NaYF4 Fluoride Nano luminescent material NaYF4 Codope Up-conversion luminescence 
光子学报
2020, 49(7): 0716001
作者单位
摘要
School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
Mg2(Si,Sn)合金热电材料具有成本低廉、环境友好等优点, 作为一种绿色环保的中温区热电材料一直受到广泛关注。在Mg2(Si,Sn)基材料中掺杂大剂量Sb可诱发Mg空位, 从而有效降低材料的热导率, 但同时Seebeck系数也会降低。研究采用高温熔炼及真空热压法成功合成了Mg2.12-ySi0.4Sn0.5Sb0.1Zny (y=0~0.025)试样, 通过在大剂量Sb掺杂的Mg2(Si,Sn)基材料中添加Zn元素, 研究了大剂量Sb和微量Zn双掺杂对材料电声输运特性的综合影响。研究结果表明, Zn-Sb双掺杂可通过有效抑制材料电子热导率的方法大幅降低Mg2(Si,Sn)合金材料的总热导率, 与此同时明显提高掺Zn试样的塞贝克系数以弥补其电导率的损失, 维持材料较为优异的电学性能。最终, 热导率的大幅优化及电学性能的维持实现了材料综合热电性能的显著提升, 其中, 成分为Mg2.095Si0.4Sn0.5Sb0.1Zn0.025的材料在823 K下热电优值ZT达到1.42。
thermoelectric materials Mg2(Si Sn) alloy zinc-antimony doping figure of merit 热电材料 Mg2(Si Sn)合金 Zn-Sb双掺杂 热电优值 
无机材料学报
2019, 34(3): 310
Zhou LI 1Chong XIAO 2  1  2
作者单位
摘要
1 1. School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
2 微尺度物质科学国家研究中心, 合肥 230026
选取BiCuSeO双亚层超晶格热电材料为研究对象, 通过La、Ag单掺杂和双掺杂两种方式等价取代[Bi2O2]2+亚层和[Cu2Se2]2-亚层中的Bi、Cu位点, 并对其热电输运性能和缺陷调控机理进行研究, 结果发现:La-Ag双掺杂可以结合两种单掺杂的优势, 在适度提升载流子浓度的同时保持与纯样相当的载流子迁移率, 从而使电导率得到大幅度的提升。与此同时, La-Ag双掺杂可以引发能带收敛效应, 有助于同步获得较高的载流子迁移率和Seebeck系数, 最终使PF得到了优化; 另一方面, 由于点缺陷对载热声子的强烈散射作用, 样品的晶格热导率和总热导率进一步降低, 使最终ZT值也得到了优化。结果, La-Ag双掺杂样品的ZT值在755 K下达到0.46, 高于原始纯样(ZT=0.27)和单掺杂样品。该项研究表明La、Ag异层等价双掺杂策略可以实现BiCuSeO热电输运参数的协同调控与优化。
heterolayer dual-doping BiCuSeO thermoelectric property electrical-thermal transport synergistic modulation 异层双掺杂 BiCuSeO 热电性能 电热输运 协同调控 
无机材料学报
2019, 34(3): 294
王浩 1,2赵谡玲 1,2徐征 1,2宋丹丹 1,2[ ... ]魏鹏 1,2
作者单位
摘要
1 北京交通大学发光与光信息教育部重点实验室, 北京 100044
2 北京交通大学光电子技术研究所, 北京 100044
研究利用溶液法制备的有机磷光双重掺杂体系电致发光器件的光致发光特性与电致发光特性, 并研究了在这种体系中深能级陷阱导致的器件效率衰退现象。 首先利用紫外光谱仪和光致瞬态寿命测试系统对基于旋涂法制备的以宽带隙材料4,4’-bis(N-carbazolyl)-1,1’-biphenyl(CBP)为主体, 绿色磷光材料tris(2-phenylpyridine) iridium(Ⅲ)(Ir(ppy)3)和红色磷光材料tris(1-phenylisoquinolinato-C2,N)iridium(Ⅲ)(Ir(piq)3)为客体材料的薄膜进行了光致发射光谱测试和薄膜在Ir(ppy)3发光峰516 nm处的光致发光寿命测试, 实验发现在Ir(ppy)3掺杂比例保持定值时, 随着深能级掺杂材料Ir(piq)3的引入, 其光致发光光谱中Ir(ppy)3的相对发光强度减弱且发光寿命变短, 当Ir(piq)3掺杂浓度继续提高时, 薄膜光致发光光谱基本保持不变且Ir(ppy)3的发光寿命基本不变。 实验说明在低浓度掺杂下两者的三线态能级之间存在着能量传递, 但当掺杂浓度达到高浓度时, 能量传递主要来自于主客体之间的传递, 两者作为独立的发光中心发光。 然后利用溶液法制备了发光层分别为CBP∶Ir(ppy)3, CBP∶Ir(ppy)3∶Ir(piq)3和CBP∶Ir(ppy)3∶PTB7的三组器件, 器件结构为ITO/PEDOT∶PSS/Poly-TPD/EML/TPBi(15 nm)/Alq3(25 nm)/LiF(0.6 nm)/Al(80 nm)。 在Ir(ppy)3和Ir(piq)3共掺杂器件和Ir(ppy)3单掺杂器件的对比实验中发现, 加入一定比例的深能级材料后, 器件的电致发光光谱发生改变, Ir(piq)3的相对发光强度增强, 器件发光效率下降且效率滚降现象明显。 通过对器件进行J-V测试, 发现在Ir(ppy)3单掺杂器件中陷阱填充电流随着掺杂材料浓度的提高而提高, 但在加入等浓度深能级材料Ir(piq)3后, 陷阱填充电流基本保持一致。 瞬态电致发光测试表明, 随着Ir(ppy)3掺杂比例的提高, 器件内由于陷阱载流子释放而产生的瞬时发光强度降低, 这是由于Ir(ppy)3具有一定的传导电荷作用, 会减少器件中的陷阱载流子, 这进一步说明了具有较深能级的Ir(piq)3是限制载流子的主要能级陷阱。 同时发现随反向偏压的增大, 瞬态发光强度增大且发光衰减加速, 这是因为位于深能级陷阱的载流子在高电压下被释放, 重新复合发光, 说明深能级陷阱的确限制住了大量载流子, 而由于主体三线态激子具有较长的寿命, 激子间相互作用产生的单线态激子在高反压下解离, 从而引起三线态激子-极化子相互作用的加剧, 导致发光衰减加速。 在窄带隙聚合物材料PTB7与Ir(ppy)3共掺杂器件实验中发现, 随着PTB7掺杂浓度提高, 陷阱浓度变大且器件效率降低, 具有较深能级的PTB7成为了限制载流子的深能级陷阱。 因此说明在双掺杂有机磷光电致发光器件中, 深能级材料会成为限制载流子的能级陷阱, 引起载流子大量堆积, 从而导致三线态激子与极化子相互作用加剧, 使器件的发光效率衰退。
有机磷光电致发光器件 双掺杂 陷阱电荷 瞬态电致发光 PhOLEDs Double dopants strategy Trapped charges Transient electroluminescence measurement 
光谱学与光谱分析
2019, 39(4): 1018
作者单位
摘要
1 哈尔滨工业大学 航天学院,哈尔滨 150001
2 国防科技大学 物理系,长沙 410073
3 哈尔滨工业大学 航天学院,哈尔滨 150001,
在LiNbO3中掺入0.2 mol% MnO和0.1 mol% Fe2O3,采用顶部籽晶法生长了双掺杂近化学计量比铌酸锂晶体.紫外吸收测试结果表明,晶体成分趋近于化学计量比.采用二波耦合光路测试了晶体的光折变性能.晶体的指数增益系数达到28 cm-1,衍射效率为68.3%,响应时间为亚秒级.利用晶体进行了体全息存储实验,实验结果显示,双掺杂近化学计量比晶体的图像存储质量明显好于相同掺杂的同成分晶体,记录速度较同成分晶体提高了二个数量级.
铌酸锂 双掺杂 近化学计量比 光学性质 Lithium niobate Co-doped Stoichiometric Optical properties 
光子学报
2009, 38(2): 352
作者单位
摘要
宁波大学光电子功能材料重点实验室,宁波,315211
通过选择合适的化学原料(Li2O:48.6mol%, Nb2O5:51.4mol%)、控制生长速度(<3 mm/h)及固液界面的温度梯度(20~40℃/cm)与温场,用坩埚下降法成功地生长出了Zn、Cr双掺杂初始浓度分别为3 mol%、0.1 mol%,以及6 mol%、0.1 mol%的大尺寸铌酸锂晶体.生长的晶体无宏观缺陷,在He-Ne激光的照射下,无散射中心.测定了晶体的宽带荧光光谱(700~1200 nm)及R带(710~740 nm)的精细变温光谱.这些R带的光谱线由Cr离子所取代的Li(Cr3+Li)与Nb(Cr3+Nb)的发光中心以及声子辅助吸收所致.
锌、铬双掺杂铌酸锂晶体 坩埚下降法 光谱 Zn Cr-doped LiNbO_3 crystal Bridgman method Optical spectra 
光子学报
2005, 34(8): 1237
作者单位
摘要
中国科学院上海光学精密机械研究所, 上海 201800
实验研究了掺杂组份比对LiNbO3∶Cu∶Ce晶体非挥发全息记录性能的影响。结果表明,在全息记录过程中,掺杂组份比通过改变晶体的紫外光吸收特性而引起全息记录性能的改变。增加LiNbO3∶Cu∶Ce晶体中Cu和Ce的掺杂组份比会导致晶体对紫外光吸收的增强,进而提高了全息记录灵敏度和固定衍射效率。在弱氧化处理的掺有CuO和Ce2O3的质量分数分别为0.085%和0.011%的LiNbO3∶Ce∶Cu晶体中,得到了最高的固定衍射效率ηf=32%和记录灵敏度S=0.022 cm/J。
全息 体全息存储 非挥发性 双掺杂LiNbO3∶Cu∶Ce 
中国激光
2005, 32(2): 248
作者单位
摘要
中国科学院上海光学精密机械研究所,上海 201800
提出了一种在双掺杂铌酸锂晶体中用调制的双紫外光进行非挥发全息记录的方法。与通常的用紫外光敏化的非挥发全息记录相比,这种方法可以大幅度地提高光栅强度和记录灵敏度。联立双中心物质方程和双光束耦合波方程,数值分析了光栅强度和衍射效率随时间的变化并讨论了掺杂浓度和记录光强对紫外光非挥发全息记录机制下光折变效应的影响。研究发现,紫外光记录得到的深浅中心的光栅具有相同的相位,总的光栅(深浅中心光栅的叠加)强度为两光栅强度之和,固定过程中深中心的光栅得到增强;增大深浅中心掺杂的浓度可以提高光栅强度,增大记录紫外光的光强可以增加光栅的强度和记录灵敏度。理论模拟可以证实并预测实验结果。
全息 非挥发全息记录 紫外光记录 双掺杂铌酸锂晶体 灵敏度 
光学学报
2005, 25(12): 1600
作者单位
摘要
中国科学院上海光学精密机械研究所, 上海 201800
通过联立两中心带输运物质方程和双光束耦合波方程,建立了双掺杂LiNbO3晶体采用双色光(紫外敏化光和He-Ne记录光)实现非挥发性全息存储的动力学模型。理论上分析了深、浅两杂质中心的微观光学参量(包括敏化光的深中心和浅中心光激发系数、记录光的浅中心光激发系数以及深中心和浅中心的电子复合系数)对记录饱和衍射效率和固定衍射效率的影响。数值计算表明,在双掺杂LiNbO3晶体的非挥发性全息存储中,为了得到高的固定衍射效率,应该选择复合系数较大、记录光激发系数较高、敏化光激发系数较低的浅杂质中心以及敏化光激发系数较高、复合系数最佳的深杂质中心。
非线性光学 体全息存储 双掺杂LiNbO3 非挥发性 光学参量 双光束耦合 
光学学报
2004, 24(7): 941

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!