作者单位
摘要
1 西安邮电大学 电子工程学院, 西安 710121
2 中国科学院西安光学精密机械研究所 瞬态光学与光子技术国家重点实验室, 西安 710119
将Yb3+作为协助发光的敏化剂,Tb3+和Tm3+作为发光中心的激活剂分别加入到基质氟化钇钠中,通过水热合成法分别制成不同掺杂浓度的NaYF4:Yb3+/Tb3+和NaYF4:Yb3+/Tm3+双掺杂氟化物纳米发光材料,并通过扫描电子显微镜、X射线衍射以及荧光光谱等手段分别对NaYF4:Yb3+/Tb3+和NaYF4:Yb3+/Tm3+双掺杂氟化物材料纳米颗粒的形貌及其发光特性进行了研究.实验结果表明:系列样品的X射线衍射图谱衍射峰与标准卡片吻合得很好,实验浓度范围内Yb3+/Tb3+和Yb3+/Tm3+共掺没有改变NaYF4的晶体结构.实验得到了该材料在980 nm激光激发下的上转换发光光谱并分析了该材料的上转换发光机理,NaYF4:Yb3+/Tb3+在980 nm激光激发的情况下出现的蓝光,绿光以及红光,分别对应于5D47F65D47F55D47F1的辐射跃迁;NaYF4:Yb3+/Tm3+在980 nm光源激发下出现强的480 nm的蓝光,对应的是1G43H6的电子跃迁能级带,在660 nm强的红光发射谱带,对应的是1G43F4能级跃迁辐射光.
氟化物 纳米发光材料 双掺杂 上转换发光 NaYF4 Fluoride Nano luminescent material NaYF4 Codope Up-conversion luminescence 
光子学报
2020, 49(7): 0716001
作者单位
摘要
西北大学信息科学与技术学院, 陕西 西安 710127
利用纳米发光材料的X 射线发光断层成像(XLCT)作为一种新型的成像模态,能够同时进行功能成像以及分子成像。在XLCT 中,光子在组织中的散射效应使得纳米发光目标的重建具有不适定性,因此如何快速、精确地重建目标成为一个难题。针对此问题,选择扩散近似模型描述组织中的光子传输过程,采用基于L1 正则化的分割增广拉格朗日收缩方法进行重建。在数值实验和物理实验中,将其与初始增广拉格朗日方法对比,验证其可行性。实验结果表明,该算法得到的重建结果无论在质量方面还是在收敛速度方面都具有一定优势。
生物光学 X 射线发光断层成像 纳米发光材料 分子影像 三维重建 
光学学报
2016, 36(3): 0317001
作者单位
摘要
1 中国科学院理化技术研究所 中国科学院光化学转换与功能材料重点实验室, 北京 100190
2 中国科学院理化技术研究所 中国科学院功能晶体与激光技术重点实验室, 北京 100190
设计并合成了掺杂不同Nd3+离子浓度的氟化镧纳米颗粒, 并用油酸进行了表面修饰, 使得这类纳米颗粒可分散于常见的有机溶剂中形成透明、均一、稳定的溶液。对纳米颗粒的结构、晶相以及发光性能进行了表征。固体和溶液材料在1 060 nm都有强的发射峰, 说明纳米晶格可有效地保护Nd3+离子免受外界环境对发光的猝灭影响。纳米颗粒有机溶液的吸收损耗和散射损耗测试结果表明, 其总损耗系数能够满足激光介质材料的损耗要求, 为该材料的实用化打下了基础。
稀土 纳米发光材料 共沉淀法 液体激光介质 rare-earth nanocrystal luminescent materials coprecipitation method liquid laser medium 
发光学报
2015, 36(2): 129

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!