硅酸盐通报, 2023, 42 (5): 1886, 网络出版: 2023-08-13  

基于响应面法优化航天电连接器的封接工艺研究

Optimization of Sealing Process of Aerospace Electrical Connector Based on Response Surface Methodology
作者单位
1 陕西科技大学材料科学与工程学院, 西安 710021
2 东旭集团有限公司, 北京 100036
摘要
以电子玻璃为密封材料的航天电连接器在航空航天领域中得到了广泛应用。本文以电子玻璃密封航天电连接器的气密性为优化目标, 对电连接器的封接工艺进行优化。以电连接器的漏率为响应目标函数, 运用Box-Behnken试验与响应面分析, 对封接工艺条件进行评价。建立二次多项式回归方程模型, 对回归方程进行方差分析与系统性检验, 并对封接温度、保温时间和氮气流量等工艺参数进行优化。结果表明, 最佳封接工艺条件为升温速率10 ℃/min、封接温度944 ℃、保温时间32 min、氮气流量1 408 L/h、降温速率10 ℃/min, 该条件下航天电连接器的平均漏率为4.07×10-10 Pa·m3·s-1, 与回归模型预测值相符。玻璃与金属封接的机理为玻璃与金属的化学键合与物理啮合, 以及玻璃与金属氧化物的良好润湿。
Abstract
The aerospace electrical connectors with electronic glass as sealing material are widely used in aerospace field. Taking the air tightness of electronic glass sealed aerospace electrical connectors as optimization goal, the sealing process of electrical connectors was optimized. Taking the leakage rate of electrical connectors as response objective function, the Box-Behnken design and response surface analysis were used to evaluate the sealing process conditions. The quadratic polynomial regression equation model was established, and the regression equation was analyzed by variance and systematically test. The process parameters such as sealing temperature, sealing time and nitrogen flow were optimized. The results show that the optimal sealing process conditions are heating rate of 10 ℃/min, sealing temperature of 944 ℃, sealing time of 32 min, nitrogen flow rate of 1 408 L/h, and cooling rate of 10 ℃/min. The average leakage rate of aerospace electrical connectors under these conditions is 4.07×10-10 Pa·m3·s-1, which is consistent with the predicted value of regression model. The mechanism of glass and metal sealing is chemical bonding and physical meshing between glass and metal, and the good wetting between glass and metal oxide.
参考文献

[1] 王得成, 周 鑫, 李 勇, 等. 航天产品电连接器连接质量提高方法与研究[J]. 中国设备工程, 2020(24): 144-145.

[2] CHEN W H. Accelerated degradation reliability modeling and test data statistical analysis of aerospace electrical connector[J]. Chinese Journal of Mechanical Engineering, 2011, 24(6): 957.

[3] LUNDQUIST E J, FURSE C. Connector impedance and frequency modes in aerospace wiring systems[J]. Microwave and Optical Technology Letters, 2017, 59(1): 89-93.

[4] 陆广华, 王 匀, 张乐莹, 等. 温降速率对玻璃-金属封接电连接器性能的影响[J]. 铸造技术, 2017, 38(2): 432-434.

[5] LI S H, HU K J, HUI W C, et al. Shear strength and interfacial characterization of borosilicate glass-to-metal seals[J]. Journal of Alloys and Compounds, 2020, 827: 154275.

[6] ARDESTANI S S, DASHTIZAD V, KAFLOU A. Effects of temperature, time, atmosphere and sealing geometry on defects occurred in borosilicate glass-kovar alloy seal[J]. Ceramics International, 2021, 47(2): 2008-2015.

[7] 国家市场监督管理总局, 国家标准化管理委员会. 宇航用电连接器设计准则和方法: GB/T 39339-2020[S]. 北京: 中国标准出版社, 2020.

[8] 中国人民解放军总装备部. 耐环境快速分离高密度小圆形电连接器通用规范: GJB 599B-2012[S]. 北京: 中国标准出版社, 2012.

[9] 国家国防科技工业局. 微电子封装金属外壳可伐合金零件预氧化工艺技术要求: SJ 21404-2018[S]. 北京: 中国标准出版社, 2018.

[10] 李 莉, 张 赛, 何 强, 等. 响应面法在试验设计与优化中的应用[J]. 实验室研究与探索, 2015, 34(8): 41-45.

[11] FANG P Y, LI S H, GUO X, et al. Response surface method based on uniform design and weighted least squares for non-probabilistic reliability analysis[J]. International Journal for Numerical Methods in Engineering, 2020, 121(18): 4050-4069.

[12] MOSLEMI A, SEYYED-ESFAHANI M. Robust optimization of multistage process: response surface and multi-response optimization approaches[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2022, 23(2): 163-175.

[13] 傅莺莺, 田振坤, 李裕梅. 方差分析的回归解读与假设检验[J]. 统计与决策, 2019, 35(8): 77-80.

[14] LU C, FENG Y W, FEI C W. Weighted regression-based extremum response surface method for structural dynamic fuzzy reliability analysis[J]. Energies, 2019, 12(9): 1588.

[15] LI Z H, LIU H L. Integrating preference by means of desirability function with evolutionary multi-objective optimization[J]. Intelligent Automation & Soft Computing, 2015, 21(2): 197-209.

[16] WANG Z J, GAO Z, CHU J L, et al. Low temperature sealing process and properties of kovar alloy to DM305 electronic glass[J]. Metals, 2020, 10(7): 941.

[17] YANG C, YANG D L, ZHANG Y, et al. Influence of heat-treatment schedule on glass-to-metal sealing behavior[J]. Rare Metal Materials and Engineering, 2019, 48(12): 3829-3834.

[18] SHEN Z Q, ZHANG Y, CHEN Y Z, et al. Effect of pre-oxidization condition on glass-to-metal sealing[J]. Journal of Non-Crystalline Solids, 2019, 521: 119488.

[19] HU K J, LI S H, FAN Z C, et al. Contributions of mechanical bonding and chemical bonding to high-temperature hermeticity of glass-to-metal compression seals[J]. Materials & Design, 2021, 202: 109579.

[20] FAN Z C, HU K J, HUANG Z Y, et al. Optimized sealing process and real-time monitoring of glass-to-metal seal structures[J]. Journal of Visualized Experiments, 2019(151): 127-128.

[21] 郭宏伟, 党梦阳, CHI Longxing, 等. 电连接器用玻璃的封接工艺优化与连接机理[J]. 硅酸盐通报, 2019, 38(11): 3506-3511+3523.

[22] GUO H W, DANG M Y, LIU L, et al. Alkali barium glasses for hermetic compression seals: compositional effect, processing, and sealing performance[J]. Ceramics International, 2019, 45(17): 22589-22595.

郭宏伟, 王毅, 白赟, 赵志龙, 王耀君. 基于响应面法优化航天电连接器的封接工艺研究[J]. 硅酸盐通报, 2023, 42(5): 1886. GUO Hongwei, WANG Yi, BAI Yun, ZHAO Zhilong, WANG Yaojun. Optimization of Sealing Process of Aerospace Electrical Connector Based on Response Surface Methodology[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(5): 1886.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!