硅酸盐学报, 2022, 50 (5): 1257, 网络出版: 2022-11-23  

磁控溅射制备Cu2ZnSnS4薄膜太阳电池

Preparation of Cu2ZnSnS4 Thin Films Solar Cells Based on Magnetron Sputtering
作者单位
云南师范大学,云南省农村能源工程重点实验室,昆明 650500
摘要
为解决硫化过程中Sn元素损失的问题以及减少MoS2的厚度,采用磁控溅射技术,在基于钼的钠钙玻璃衬底上采用双周期溅射的方法,以ZnO/SnO2/Cu的顺序制备了含氧的Cu-Zn-Sn预制层。结果表明:SnO2以及ZnO的使用很好的抑制了Sn元素的损失以及MoS2层的形成,而且在590 ℃的硫化温度下能制备出表面平整、晶粒致密、晶体结构较好的单相Cu2ZnSnS4 (CZTS)吸收层薄膜。最后,制备出结构完整的CZTS薄膜太阳电池,在590 ℃硫化制备的CZTS薄膜太阳电池效率最高,其开路电压为590 mV,短路电流密度为22.09 mA/cm2,填充因子为39.28%,光电转换效率达到5.12%,为今后制备高效CZTS薄膜太阳电池起到了推动作用。
Abstract
In order to solve a problem of Sn-loss and reduce the thickness of MoS2 during the sulfurization process, the oxygen containing Cu-Zn-Sn precursor thin films were prepared on Mo-coated soda lime glasses via magnetron sputtering ZnO/SnO2/Cu. The results show that the Sn-loss and the formation of MoS2 are well inhibited by the utilization of SnO2 and ZnO. The single-phase CZTS absorbed thin films with the smooth surface, dense grains and good crystal structure can be prepared at 590 ℃. Also, the CZTS solar cells from oxygen containing precursors annealed at 590 ℃ have an optimum power conversion efficiency (PCE) of 5.12% with an open circuit voltage of 590 mV, a short circuit current density of 22.09 mA/cm2 and a fill factor of 39.28%.
参考文献

[1] First Solar Press Release. First Solar Achieve New Conversion Efficiency World Record CdTe Solar PV Cells[EB]. (Originally published on Sustainnovate, 2016), https://clean techn ica.com/2016/ 02/23.Accessed 15 June 2021.

[2] MARTIN A G, EWAN D D, JOCHEN H E, et al. Solar cell efficiency tables (version 56)[J]. Prog Photovolt, 2020, 28(7): 629-638.

[3] Solar Frontier Press Release, Solar Frontier Achieves World Record Thin-Film Solar Cell Efficiency of 23.35%[EB]. 2019, Available at: https://www.solar-frontier.com/eng/news/2019/0117.Accessed 01 March 2019.

[4] ZHENG X F, LIU Y F, ZHANG N, et al. Fabrication of Cu2ZnSn (S, Se)4 thin film solar cell devices based on printable nano-ink[J]. Bull Mater Sci, 2019, 42:68.

[5] WILLIAM S, HANS J Q. Detailed balance limit of efficiency of p-n junction solar cells[J]. J Appl Phys, 1961, 32(3): 510-519.

[6] HIRONORI K, KAZUO J, WIN S M, et al. Development of CZTS-based thin film solar cells[J]. Thin Solid Films, 2009, 517: 2455-2460.

[7] KUNIHIKO T, NORIKO M, HISAO U. Preparation of Cu2ZnSnS4 thin films by sulfurizing sol-gel deposited precursors[J]. Sol Energ Mater Sol C, 2007, 91(13): 1199-1201.

[8] MASAMI A, KOICHIRO Y, HISASHI M. XPS depth profile study of CZTS thin films prepared by spray pyrolysis[J]. Phys Status Solid C, 2013, 10(7-8): 1058-1061.

[9] SANDIP D, KRISHNA C M. Comparison of Cu2ZnSnS4 thin film properties prepared by thermal evaporation of elemental metals and binary sulfide sources[C]. 2012, 38th IEEE Photovoltaic Specialists Conference.

[10] ZHENG M J, ZHANG L D, LI G.H, et al. Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique[J]. Chem Phys Lett, 2002, 363: 123-128.

[11] KENTARO I, TATSUO N. Electrical and optical properties of stannite-type quaternary semiconductor thin films[J]. Jpn J Appl Phys, 1988, 27(Part 1, No. 11): 2094-2097.

[12] HIRONORI K, NOBUYUKI S, SHIMA H, et al. Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E-B evaporated precursors[J]. Sol Energ Mat Sol C, 1997, 49: 407-414.

[13] YAN C, HUANG J L, SUN K?偆g W, ?偆get al. Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment[J]. Nat Energy, 2018, (3): 764-772.

[14] SU Z H, LIANG G X, FAN P, et al. Device postannealing enabling over 12% efficient solution-processed Cu2ZnSnS4 solar cells with Cd2+ substitution[J]. Adv Mater, 2020, DOI: 10.1002/adma.202000121.

[15] LI W, CHEN J, CUI H T, et al. Inhibiting MoS2 formation by introducing a ZnO intermediate layer for Cu2ZnSnS4 solar cells[J]. Mater Lett, 2014, 130: 87-90.

[16] CHEN G L, YUAN C C, LIU J W, et al. Fabrication of Cu2ZnSnS4 thin films using oxides nanoparticles ink for solar cell[J]. J Power Sources, 2015, 276: 145-152.

[17] LI J J, HUANG Y C, HUANG J L, et al. Defect control for 12.5% efficiency Cu2ZnSnSe4 kesterite thin-film solar cells by engineering of local chemical environment[C]. 第七届新型太阳能电池材料科学与技术学术研讨会论文集.中国可再生能源学会光化学专业委员会: 中国科学院物理研究所清洁能源实验室, 2020: 297.

[18] GONG Y C, ZHANG Y F, JEDLICKA E, et al. Sn4+ precursor enables 12.4% efficient kesterite solar cell from DMSO solution with open circuit voltage deficit below 0.30 V[J]. Sci China Mater, 2021, 64, 52-60.

[19] WEBER A, MAINZ R, SCHOCK H W. On the Sn loss from thin films of the material system Cu-Zn-Sn-S in high vacuum[J]. J Appl Phys, 2010, 107: 013516-013621.

[20] MARCHIONNA S, GARATTINI P, DONNE A L, et.al. Cu2ZnSnS4 solar cells grown by sulphurisation of sputtered metal precursors[J]. Thin Solid Films, 2013, 542: 114-118.

[21] SVEN E, NISHANT S, CHARLOTTE P-B. Cu2ZnSn(S,Se)4 from annealing of compound co-sputtered precursors-recent results and open questions[J]. Sol Energy, 2018, 175: 84-93

李新毓, 张道永, 李祥, 李秋莲, 刘信, 王书荣. 磁控溅射制备Cu2ZnSnS4薄膜太阳电池[J]. 硅酸盐学报, 2022, 50(5): 1257. LI Xinyu, ZHANG Daoyong, LI Xiang, LI Qiulian, LIU Xin, WANG Shurong. Preparation of Cu2ZnSnS4 Thin Films Solar Cells Based on Magnetron Sputtering[J]. Journal of the Chinese Ceramic Society, 2022, 50(5): 1257.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!