微电子学, 2022, 52 (1): 65, 网络出版: 2022-06-14  

一种基于FPGA进位逻辑的RO PUF设计

Design of a RO PUF Based on FPGA Carry Logic
作者单位
合肥工业大学 微电子学院, 合肥 230000
摘要
物理不可克隆函数(PUF)作为一种可有效地应对硬件安全问题的电路结构, 在近些年得到了广泛的关注。环形振荡器(RO) PUF由于不需要完全对称的布线方式, 因此被认为是最理想的PUF结构之一。现有的RO PUF设计愈加复杂且需要“硬宏”来固定电路, 这导致PUF的移植性很差。文章利用FPGA中固有的进位逻辑资源实现RO PUF, 通过将3个进位逻辑中的11个异或门级联, 经配置实现11阶振荡环, 有效解决了可移植性问题, 避免了使用“硬宏”来固定电路。采用Xilinx Spartan-6, 对提出的结构进行实验。实验结果表明, 设计的RO PUF实现了50.65%的均匀性、48.48%的唯一性和1.56%的误码率。该设计方法具有易于实现、资源占用形式单一、无需手动布局布线等特点。
Abstract
Physical Unclonable Function (PUF), as a circuit structure that can effectively deal with hardware security issues, has received extensive attention in recent years. Among them, the Ring Oscillator (RO) PUF does not require a completely symmetrical wiring method, so it is considered to be one of the most ideal PUF structures. However, the existing RO PUF design is more complicated and requires "hard macros" to fix the circuit, which results in poor portability of PUF. A RO PUF was implemented by using the inherent carry logic resources in FPGA in this paper. By cascading 11 XOR gates in 3 carry logics, the 11th-order oscillation ring was configured to solve the problem of portability and to avoid the use of "hard macros" to fix the circuit. The proposed structure was tested by using Xilinx Spartan-6. Experimental results showed that the proposed RO PUF achieved an uniformity of 50.65%, an uniqueness of 48.48% and a bit error rate of 1.56%. At the same time, this design had the characteristics of easy implementation, single resource occupation, and no manual layout.
参考文献

[1] KUMAR S S, GUAJARDO J, MAES R, et al. Extended abstract: the butterfly PUF protecting IP on every FPGA [C] // IEEE Int Workshop Hardware-Oriented Secur & Trust. Anaheim, CA, USA. 2008: 67-70.

[2] YAMAMOTO D, SAKIYAMA K, IWAMOTO K, et al. Variety enhancement of PUF responses using the locations of random outputting RS latches [J]. J Cryptogr Engineer, 2013, 3(4): 197-211.

[3] VARCHOLA M, DRUTAROVSKY M. New high entropy element for FPGA based true random number generators [C] // CHES’10 Proceed 12th Int Conf Cryptogr Hardware Emb Syst. Santa Barbara, CA, USA. 2010: 351-365.

[4] ARDAKANI A, SHOKOUHI S B, ARASH R M. Improving performance of FPGA-based SR-latch PUF using transient effect ring oscillator and programmable delay lines [J]. Integration, 2018, 62: 371-381.

[5] HABIB B, KAPS J P, GAJ K, et al. Implementation of efficient SR-latch PUF on FPGA and SoC devices [J]. Microprocess Microsyst, 2017, 53: 92-105.

[6] SANO K, SOUDRIS D, HUBNER M, et al, Applied reconfigurable computing [M]. Bochum: Springer, 2015: 205-216.

[7] ZHOU K, LIANG H G, JIANG Y, et al. FPGA-based RO PUF with low overhead and high stability [J]. Elec Lett, 2019, 55(9): 510-513.

[8] SUH G E, DEVADAS S. Physical unclonable functions for device authentication and secret key generation [C] // 44th ACM/IEEE Design Autom Conf. San Diego, CA, USA. 2007: 9-14.

[9] ZHANG J L, QU G, LV Y Q, et al. Asurvey on silicon PUFs and recent advances in ring oscillator PUFs [J]. J Comput Sci Technol, 2014, 29(4): 664-678.

[10] HORI Y, YOSHIDA T, KATASHITA T. Quantitative and statistical performance evaluation of arbiter physical unclonable functions on FPGAs [C] //Int Conf Reconfig Comput FPGA. Cancun, Mexico. 2010: 298-303.

[11] ANDERSON J H. A PUF design for secure FPGA-based embedded systems [C] // 15th ASP-DAC. Taipei, China. 2010, 201: 1-6.

[12] ZHANG J L, WU Q, DING Y P, et al, Techniques for design and implementation of an FPGA-specific physical unclonable function [J]. J Comput Sci Technol, 2016, 31(1): 124-136.

[13] MERLI D, STUMPF F, ECKERT C. Improving the quality of ring oscillator PUFs on FPGAs [C] // Proceed 5th Workshop Emb Syst Secur. New York, NY, USA. 2010: 1-9.

[14] MATITI A, KIM I, SCHAUMONT P. A robust physical unclonable function with enhanced challenge-response set [J]. IEEE Trans InformForens & Secur, 2012, 7(1): 333-345.

[15] MAITI A, CASARONA J, MCHALE L. A large scale characterization of RO-PUF [C] // IEEE Int Symp HOST. Anaheim, CA, USA. 2010: 94-99.

[16] MAITI A, SCHAUMONT P. Improving the quality of a physical unclonable function using configurable ring oscillators [C] // Int Conf Field Program Logic & Appl. Prague, Czech Republic. 2009: 703-707.

[17] HABIB B, GAJ K, KAPS J P. FPGA PUF based on programmable LUT delays [C] // Euromicro Conf Dig Syst Des. Los Alamitos, CA, USA. 2013: 697-704.

[18] ANANDAKUMAR N N, HASHMI M S, SANADHYA S K. Efficient and lightweight FPGA-based hybrid PUFs with improved performance [J]. Microprocess & Microsyst, 2020, 77: 103-180.

[19] BOSSUET L, XUAN T N, CHERIF Z, et al. A PUF based on a transient effect ring oscillator and insensitive to locking phenomenon [J]. IEEE Trans Emerg Top Comput, 2014, 2(1): 30-36.

[20] HERDER C, YU M, KOUSHANFAR F, et al. Physical unclonable functions and applications: a tutorial [J]. Proceed IEEE, 2014, 102(8): 1126-1141.

[21] MATITI A, GUNREDDY V, SCHAUMONT P. Embedded systems design with FPGAs [M]. New York: Springer, 2013: 245-267.

[22] GUC Y, LIU W Q, HANLEY N, et al. A theoretical model to link uniqueness and min-entropy for PUF evaluations [J]. IEEE Trans Comput, 2019, 68(2): 287-293.

[23] ANANDAKUMAR N N, HASHMI M S, SANADHYA S K. Compact implementations of FPGA-based PUFs with enhanced performance [C] // 30th Int Conf VLSI Des and 16th Int Conf Emb Syst. Hyderabad, India. 2017: 161-166.

陈鹏, 李先东, 姚亮, 易茂祥, 鲁迎春. 一种基于FPGA进位逻辑的RO PUF设计[J]. 微电子学, 2022, 52(1): 65. CHEN Peng, LI Xiandong, YAO Liang, YI Maoxiang, LU Yingchun. Design of a RO PUF Based on FPGA Carry Logic[J]. Microelectronics, 2022, 52(1): 65.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!