红外, 2022, 43 (10): 26, 网络出版: 2023-02-20  

腔面镀膜对1342 nm分布反馈半导体激光器输出功率的影响

Effect of Cavity Surface Coating on Output Power of 1342 nm Distributed Feedback Semiconductor Laser
作者单位
1 江苏师范大学物理与电子工程学院,江苏 徐州221116
2 江苏华兴激光科技有限公司,江苏 徐州221300
摘要
为提高1342 nm 分布反馈(Distributed Feedback, DFB)半导体激光器的输出功率,设计了三种腔面膜膜系组合。采用电子束蒸发镀膜技术对该激光器进行了腔面镀膜,并测试了其在三种膜系组合下的输出功率。结果表明,采用增透膜为基底(Sub)/Al2O3/Ta2O5/空气(Air)、高反膜为Sub/(Al2O3/Si)3Al2O3/Air的腔面膜膜系组合时,激光器的输出功率最高。前腔面反射率为02%,后腔面反射率为986%。在260 mA的直流电流下,平均输出功率达到了85 mW以上(增加了856%),斜率效率提升了829%。通过采用此膜系组合进行激光器腔面镀膜,可以大幅提升1342 nm DFB半导体激光器的输出功率。
Abstract
In order to improve the output power of 1342 nm distributed feedback (DFB) semiconductor laser, three kinds of cavity surface film combinations are designed in this paper. Electron beam evaporation coating technology is used to coat the cavity surface of the laser, and the output power of the laser under three kinds of film combinations is tested. The results show that the highest output power of 1342 nm DFB semiconductor laser is obtained by using the combination of cavity surface film system (antireflective film: Sub/Al2O3/Ta2O5/Air, high reflection film: Sub/(Al2O3/Si)3Al2O3/Air). The reflectance of the anterior cavity surface is 02%, and that of the posterior cavity surface is 986%. At 260 mA DC, the average output power reaches more than 85 mW (an increase of 856%), and the slope efficiency increases by 829%. The output power of the laser can be greatly improved by coating the cavity surface of the laser with this combination of film systems.
参考文献

[1] Bonk R, Geng D, Khotimsky D A, et al. 50G-PON: the first ITU-T higher-speed pon system [J]. IEEE Communications Magazine, 2022, 60(3): 48-54.

[2] Zhang D Z, Liu D K, Wu X M, et al. Progress of ITU-T higher speed passive optical network (50G-PON) standardization [J]. Journal of Optical Communications and Networking, 2020, 12(10): 99-108.

[3] 黄北举, 张赞, 张赞允, 等. 硅基光电子与微电子单片集成研究进展 [J]. 微纳电子与智能制造, 2019, 1(3): 55-67.

[4] Wang Z C, Amin Abbasi, Utsav Dave, et al. Novel light source integration approaches for silicon photonics [J]. Laser & Photonics Reviews, 2017, 11(4): 1700063.

[5] Ogita S, Hirano M, Soda H, et al. Dependence of spectral line width of DFB lasers on facet Reflectivity [J]. Electronics Letters, 2007, 23(7): 347-349.

[6] 魏林, 李耀耀, 李爱珍, 等. 腔面镀膜分布反馈量子级联激光器 [J]. 功能材料与器件学报, 2009, 15(3): 233-237.

[7] 李向阳. 金属/介质膜系光电特性的研究 [D]. 西安: 西安工业大学, 2012.

[8] Lee B G, Belkin M A, Pflugl C, et al. DFB quantum cascade laser arrays [J]. IEEE Journal of Quantum Electronics, 2009, 45(5): 554-565.

[9] Wang D B, Zhang J C, Cheng F M, et al. Stable single-mode operation of distributed feedback quantum cascade laser by optimized reflectivity facet coatings [J]. Nanoscale Research Letters, 2018, 13(1): 37.

[10] 卢进军, 刘卫国, 潘永强. 光学薄膜技术 [M]. 北京: 电子工业出版社, 2011.

[11] 熊锋, 乔学亮, 陈建国, 等. 激光器谐振腔全介质高反膜的研究进展 [J]. 激光杂志, 2002, 23(1): 1-4.

[12] Frdric G. On the effects of an antireflection coating impairment on the sensitivity to optical feedback of AR/HR semiconductor DFB lasers [J]. IEEE Journal of Quantum Electronics, 2009, 45(6): 720-729.

[13] 马海霞, 武艳军, 王吉明, 等. 基于传输矩阵法的多层介质膜反射特性研究 [J]. 大学物理, 2020, 39(8): 25-30.

[14] Kaneko T, Akao N, Hara N, et al. In situ ellipsometry analysis on formation process of Al2O3-Ta2O5 films in Ion beam sputter deposition [J]. Chinese Chemical Letters, 2005, 26(10): 1383-1385.

[15] 马钰慧, 邱伟彬, 苏道军, 等. 半导体激光器高反膜系参数的模拟仿真分析 [J]. 华侨大学学报(自然科学版), 2013, 34(6): 636-639.

[16] Crooks D, Cagnoli G, Fejer M M, et al. Experimental measurements of mechanical dissipation associated with dielectric coatings formed using SiO2, Ta2O5 and Al2O3 [J]. Classical & Quantum Gravity, 2006, 23(15): 4953.

[17] 王聪娟, 晋云霞, 王英剑, 等. 离子束辅助技术获得高激光损伤阈值的增透膜 [J]. 中国激光, 2006, 33(5): 683-686.

[18] Jin Y, Ren C S, Yang L, et al. Atmospheric pressure plasma jet in Ar and O2/Ar mixtures: properties and high performance for surface cleaning [J]. Plasma Science and Technology, 2013, 15(12): 1203-1208.

[19] 宋义民. 射频自体辉光放电辅助电子束沉积的放电特性与离子分布研究 [J]. 航空制造技术, 2013, 38(7): 58-61.

[20] Kim S T, Kim B G. Analysis of single-mode yields above threshold for complex-coupled distributed feedback lasers with asymmetric facet reflectivities [J]. JOSA B, 2005, 22(5): 1010-1015.

[21] Heikki V, Topi U, Mihail Dumitrescu. Simulation studies of DFB laser longitudinal structures for narrow linewidth emission [J]. Optical and Quantum Electronics, 2017, 49(4): 160.

张煜俊, 闫长春, 陈建抗, 赵春龙, 罗帅, 徐鹏飞, 李璇. 腔面镀膜对1342 nm分布反馈半导体激光器输出功率的影响[J]. 红外, 2022, 43(10): 26. ZHANG Yu-jun, YAN Chang-chun, CHEN Jian-kang, ZHAO Chun-long, LUO Shuai, XU Peng-fei, LI Xuan. Effect of Cavity Surface Coating on Output Power of 1342 nm Distributed Feedback Semiconductor Laser[J]. INFRARED, 2022, 43(10): 26.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!