游道明 1,2谭满清 1,2,*郭文涛 1,*曹营春 1[ ... ]刘珩 1
作者单位
摘要
1 中国科学院 半导体研究所 集成光电子学国家重点实验室,北京 100083
2 中国科学院大学 材料科学与光电技术学院,北京 100049
腔面光学薄膜是光纤光栅外腔激光器(ECL)的关键结构,平面波方法(PWM)被广泛应用于腔面光学薄膜的设计,然而该设计在ECL中的实际应用效果往往并不理想。本文在使用PWM方法时通过时域有限差分法分析其中的原因,并考虑腔面尺寸和结构影响。仿真结果显示,PWM设计存在反射率差和反射曲线偏移等问题,实际的反射特性显著偏离设计值。因此本文重点优化了薄膜设计,并采用磁控溅射工艺镀膜。测量结果显示,优化后增透膜的反射率降低了30%,高反膜反射率增至96%以上,所制备的ECL的光纤输出功率超过650 mW。本文研究结果为ECL和其他半导体光电子器件的腔面光学薄膜研制提供了参考。
外腔激光器 光学薄膜 时域有限差分 腔面镀膜 external cavity diode lasers optical film finite-difference time-domain facet coating 
中国光学
2023, 16(2): 447
作者单位
摘要
1 江苏师范大学物理与电子工程学院,江苏 徐州221116
2 江苏华兴激光科技有限公司,江苏 徐州221300
为提高1342 nm 分布反馈(Distributed Feedback, DFB)半导体激光器的输出功率,设计了三种腔面膜膜系组合。采用电子束蒸发镀膜技术对该激光器进行了腔面镀膜,并测试了其在三种膜系组合下的输出功率。结果表明,采用增透膜为基底(Sub)/Al2O3/Ta2O5/空气(Air)、高反膜为Sub/(Al2O3/Si)3Al2O3/Air的腔面膜膜系组合时,激光器的输出功率最高。前腔面反射率为02%,后腔面反射率为986%。在260 mA的直流电流下,平均输出功率达到了85 mW以上(增加了856%),斜率效率提升了829%。通过采用此膜系组合进行激光器腔面镀膜,可以大幅提升1342 nm DFB半导体激光器的输出功率。
分布反馈 腔面镀膜 输出功率 1342 nm 1342 nm DFB cavity surface coating output power 
红外
2022, 43(10): 26
姚中辉 1,2陈红梅 2,3,4王拓 2,5蒋成 1,2张子旸 1,2,*
作者单位
摘要
1 中国科学技术大学纳米技术与纳米仿生学院, 安徽 合肥 230026
2 中国科学院苏州纳米技术与纳米仿生研究所, 江苏 苏州 215123
3 青岛翼晨镭硕科技有限公司, 山东 青岛 266000
4 中国科学院苏州纳米技术与纳米仿生研究所南昌研究院, 江西 南昌 330200
5 长春理工大学理学院高功率半导体激光国家重点实验室, 吉林 长春 130022

1.3 μm InAs/GaAs量子点(QD)激光器基于自身优异的光电特性,有望成为下一代光通信系统所急需的高性能、低成本光源。理论分析了提高量子点材料增益的几种方法,然后利用分子束外延(MBE)分别生长非掺杂、p型调制掺杂的8层高质量的量子点激光器外延结构,并分别制备了量子点激光器。另外,为了抑制量子点激发态与基态的激射竞争,设计并优化了激光器腔面的镀膜工艺。最终实现了300 μm超短腔长基态激射的p型调制掺杂1.3 μm InAs/GaAs的量子点激光器,展示出了其在高速光通信系统应用中的巨大潜力。

激光器 量子点 p型调制掺杂 分子束外延 腔面镀膜 
中国激光
2021, 48(16): 1601001
作者单位
摘要
1 山东华光光电子股份有限公司, 山东 济南 250101
2 济南大学物理科学与技术学院, 山东 济南 250022
3 山东大学晶体材料国家重点实验室, 山东 济南 250100
通过对大功率激光器腔面光学灾变损伤的研究, 分析了激光器腔面镀膜的损伤机理。为了提高激光器的输出功率, 采用TiO2替换Si作为高折射率材料, 建立非标准膜系降低电场强度, 同时优化膜层材料的粗糙度, 并采用离子源进行清洗和助镀, 有效提高了激光器的腔面光学灾变损伤阈值。结果表明, 所制作的808 nm激光器, 最大连续输出功率达到13.6 W。
激光器 光学灾变损伤 腔面镀膜 808 nm波长 
中国激光
2018, 45(1): 0101013

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!