人工晶体学报, 2023, 52 (1): 149, 网络出版: 2023-03-18  

LPCVD法制备TOPCon太阳能电池工艺研究

Preparation of TOPCon Solar Cells by LPCVD Method
作者单位
青海黄河上游水电开发有限责任公司西安太阳能电力分公司,西安 710100
摘要
本文主要对低压化学气相沉积(LPCVD)法制备N型高效晶硅隧穿氧化层钝化接触(TOPCon)电池工艺进行研究。分析LPCVD法制备隧穿氧化层及多晶硅层的影响因素,研究了不同氧化层厚度、多晶硅厚度及多晶硅层中P掺杂量对太阳能电池转换效率的影响。结果表明:当隧穿氧化层厚度在1.55 nm时,钝化效果最佳;多晶硅层厚度120 nm时Voc达到最高值;多晶硅层厚度在90 nm时Eff最高。当P掺杂量为3.0×1015 cm-2时可获得较高的Voc,原因是随着P掺杂量的增加,多晶硅层场钝化效果提高。
Abstract
This paper mainly studies the preparation process of N-type high-efficient crystalline silicon tunnel oxide passivated contact (TOPCon) cells by low pressure chemical vapor deposition (LPCVD) method. The influencing factors of the preparation of tunnel oxide layer and polycrystalline silicon layer by LPCVD were studied and analyzed. The effects of different oxide layer thickness, polysilicon thickness and polysilicon doping amount on the efficiency were studied. The results show that: the thickness of tunneling oxide layer of 1.55 nm shows the best passivation effect; the Voc reaches the highest value when the thickness of polysilicon layer is 120 nm; the Eff reaches the highest when the thickness of polysilicon layer is 90 nm. The field passivation effect of polysilicon layer increases with the increase of P doping concentration. Higher Voc can be obtained when the P doping concentration is 3.0×1015 cm-2.
参考文献

[1] FELDMANN F, BIVOUR M, REICHEL C, et al. Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics[J]. Solar Energy Materials and Solar Cells, 2014, 120: 270-274.

[2] RICHTER A, HERMLE M, GLUNZ S W. Reassessment of the limiting efficiency for crystalline silicon solar cells[J]. IEEE Journal of Photovoltaics, 2013, 3(4): 1184-1191.

[3] SACHS E, PRUEGER G, GUERRIERI R. An equipment model for polysilicon LPCVD[J]. IEEE Transactions on Semiconductor Manufacturing, 1992, 5(1): 3-13.

[4] NANDAKUMAR N, RODRIGUEZ J, KLUGE T, et al. Approaching 23% with large-area monoPoly cells using screen-printed and fired rear passivating contacts fabricated by inline PECVD[J]. Progress in Photovoltaics: Research and Applications, 2018: 3097.

[5] DAVID L, HBNER S, MIN B, et al. Fired-only passivating poly-Si on oxide contacts with DC-sputtered in-situ phosphorous-doped silicon layers [C]. 37th European Photovoltaic Solar Energy Conference and Exhibition, 2020.

[6] 王杨阳.TOPCon生产用LPCVD尾排设计[J].产业创新研究,2021(18):122-124.

[7] YAN D, CUEVAS A, BULLOCK J, et al. Phosphorus-diffused polysilicon contacts for solar cells[J]. Solar Energy Materials and Solar Cells, 2015, 142: 75-82.

[8] 周良德,林安中,王学建.晶体硅太阳电池钝化工艺的研究[J].太阳能学报,1999,20(1):74-77.

[9] 陈 伟,贾 锐,张希清,等.晶体硅太阳电池表面钝化技术[J].微纳电子技术,2011,48(2):118-127.

[10] BAYERL P, FOLCHERT N, BAYER J, et al. Contacting a single nanometer-sized pinhole in the interfacial oxide of a poly-silicon on oxide (POLO) solar cell junction[J]. Progress in Photovoltaics: Research and Applications, 2021, 29(8): 936-942.

[11] 宋登元,郑小强.高效率晶体硅太阳电池研究及产业化进展[J].半导体技术,2013,38(11):801-806+811.

[12] 范子雨,索开南.LPCVD法淀积SiO2薄膜的影响因素分析[J].电子工业专用设备,2019,48(6):9-12.

王举亮, 贾永军. LPCVD法制备TOPCon太阳能电池工艺研究[J]. 人工晶体学报, 2023, 52(1): 149. WANG Juliang, JIA Yongjun. Preparation of TOPCon Solar Cells by LPCVD Method[J]. Journal of Synthetic Crystals, 2023, 52(1): 149.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!