量子电子学报, 2017, 34 (1): 76, 网络出版: 2017-02-09   

径向偏振光对微纳尺度聚合物结构纵向分辨率的改善

Improvement of longitudinal resolution of micro/nano scale polymer structure with radially polarized beam
作者单位
1 中国科学院理化技术研究所, 北京 100190
2 中国科学院大学, 北京 100190
3 中国科学院重庆绿色智能技术研究院, 重庆 400714
摘要
研究了径向偏振型飞秒脉冲激光并将其引入基于双光子吸收理论的微纳加工系统,得到了 更高纵向分辨率、更低长径比的二维微纳尺度聚合物结构。对聚焦光场内光强分布的理论模拟表 明:径向偏振型飞秒脉冲激光在提高纵向分辨率的同时会在一定程度上降低聚合物结构的横向分 辨率,使聚合物结构的长径比降低。用扫描电子显微镜表征聚合物结构得到的结果与理论模拟 结果具有良好的一致性。径向偏振型飞秒脉冲激光提高了微纳尺度聚合物结构的纵向 分辨率,在激光光刻领域有良好的应用前景。
Abstract
The radially polarized femtosecond pulse laser is investigated and introduced into the micro/nano processing system which is based on two-photon absorption theory. The two-dimension micro/nano polymer structure with higher longitudinal resolution and lower aspect ratio is obtained. Theoretical simulation of intensity distribution within focal light field indicates that the radially polarized femtosecond pulse laser can reduce the lateral resolution of polymer structure to a certain extent while improving the longitudinal resolution, which reduces the aspect ratio of the polymer structure. The results obtained by characterizing the polymer structure with the scanning electron microscopy are in good agreement with the theoretical simulation results. The radially polarized femtosecond laser can improve the longitudinal resolution of micro/nano scale polymer structure. It has good application prospects in the field of laser lithography.
参考文献

[1] Dong Xianzi, Chen Weiqiang, Zhao Zhensheng, et al. Femtosecond pulse laser two-photon micro/nanofabrication technology and its applications[J]. Chinese Science Bulletin (科学通报), 2008, 53 (1): 2-13 (in Chinese).

[2] Kawata S, Sun H B, Tanaka T, et al. Finer features for functional microdevices[J]. Nature, 2001, 412(6848): 697-698.

[3] Chen Shu, Zheng Meiling, Dong Xianzi, et al. Femtosecond laser two-photon micro/nanofabrication with visible wavelengths[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2014, 31(4): 472-47(in Chinese).

[4] Campo A D, Greiner C. SU-8: A photoresist for high-aspect-ratio and 3D submicron lithography[J]. Journal of Micromechanics and Microengineering, 2007, 17(6): 81-95.

[5] Lorenz H, Despont M, Fahrni N, et al. High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS[J]. Sensors and Actuators A: Physical, 1998, 64(1): 33-39.

[6] Becker E W, Ehrfeld W, et al. Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process)[J]. Microelectronic Engineering, 1986, 4(1): 35-56.

[7] Lee C H, Chang T W, Lee K L, et al. Fabricating high-aspect-ratio sub-diffraction-limit structures on silicon with two-photon photopolymerization and reactive ion etching[J]. Appl. Phys. A, 2004, 79(8): 2027-2031.

[8] Xing J F, Dong X Z, Chen W Q, et al. Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency[J]. Appl. Phys. Lett., 2007, 90(13): 131106.

[9] Dong X Z, Zhao Z S, Duan X M. Improving spatial resolution and reducing aspect ratio in multiphoton polymerization nanofabrication[J]. Appl. Phys. Lett., 2008, 92(9): 091113.

[10] Quabis S, Dorn R, Eberler M, et al. Focusing light to a tighter spot[J]. Opt. Comm., 2000, 179(1-6): 1-7.

[11] Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam[J]. Phys. Rev. Lett., 2003, 91(23): 233901.

[12] Varghese B, Verhagen R, Hussain A, et al. Quantitative assessment of birefringent skin structures in scattered light confocal imaging using radially polarized light[J]. Sensors, 2013, 13(9): 12527-12535.

[13] Kim W C, Park N C, Yoon Y J, et al. Investigation of near-field imaging characteristics of radial polarization for application to optical data storage[J]. Opt. Rev., 2007, 14(4): 236-242.

[14] Carretero L, Acebal P, Blaya S, et al. Three-dimensional analysis of optical forces generated by an active tractor beam using radial polarization[J]. Opt. Expr., 2014, 22(3): 3284-3295.

[15] Trk P, Varga P, Laczik Z, et al. Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: An integral representation[J]. Journal of the Optical Society of American A, 1995, 12(2): 325-332.

[16] Hao B, Leger J. Experimental measurement of longitudinal component in the vicinity of focused radially polarized beam[J]. Opt. Expr., 2007, 15(6): 3550-3556.

[17] Liu H G, Yang Y F, He Y, et al. Generation of multifocal spherical spots with Bessel-Gaussian radially polarized beam modulated with diffractive optical element[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2013, 30(4): 385-390 (in Chinese).

[18] Chen H, Tripathi S, et al. Demonstration of flat-top focusing under radial polarization illumination[J]. Opt. Lett., 2014, 39(4): 834-837.

[19] Suresh P, Mariyal C, Gokulakrishnan K, et al. Investigating the focus shaping of the TEM11 beam with radial varying polarization[J]. Optik, 2015, 12(18): 1691-1694.

林乐, 郑美玲, 董贤子, 金峰, 张永亮, 赵震声, 段宣明. 径向偏振光对微纳尺度聚合物结构纵向分辨率的改善[J]. 量子电子学报, 2017, 34(1): 76. LIN Le, ZHENG Meiling, DONG Xianzi, JIN Feng, ZHANG Yongliang, ZHAO Zhensheng, DUAN Xuanming. Improvement of longitudinal resolution of micro/nano scale polymer structure with radially polarized beam[J]. Chinese Journal of Quantum Electronics, 2017, 34(1): 76.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!