太赫兹科学与电子信息学报, 2023, 21 (1): 16, 网络出版: 2023-03-14  

跨阻放大器低温性能及其对THz光电信号的放大应用

Low temperature performance of transimpedance amplifier and its application in amplification of terahertz photoelectric signal
作者单位
1 中国科学院上海微系统与信息技术研究所太赫兹固态技术实验室, 上海 200050
2 中国科学院大学材料与光电研究中心, 北京 100049
摘要
随着太赫兹技术、低温电子学和射电天文学的发展, 对可低温环境下工作的集成封装式跨阻放大芯片的需求增加。本文针对一种 Ge-Si基底型跨阻放大器, 主要研究了其深低温环境下的电学性能, 获得了 8K温度下放大器芯片的典型端口电流-电压特性曲线和增益曲线, 得到了在 0.1~3 GHz频带内较为平坦的增益效果; 为了验证其对太赫兹光电信号的放大功能, 将该跨阻放大器与太赫兹量子阱探测器集成封装, 并搭建了太赫兹脉冲激光探测系统, 在 8K温度下实现了对脉宽 2 μs太赫兹光电探测信号的有效放大, 跨阻增益约 560 Ω, 电流放大增益为 1.78 mA/V。上述研究成果首次验证了商用跨阻放大器在深低温环境下应用的可行性, 为太赫兹高速探测与高频通信领域的集成跨阻放大提供了一种有效技术手段。
Abstract
With the development of terahertz technology, low-temperature electronics and radio astronomy, the demand for integrated transimpedance amplifier chips working in low-temperature environment increases. The electrical performance of a Ge-Si based transimpedance amplifier in deep low temperature environment is studied. The current-voltage curves of the typical ports and gain curve of the amplifier chip at 8 K, and a relatively flat gain effect in the 0.1 GHz-3 GHz band are obtained. In order to verify its amplification function of terahertz photoelectric signal, GN1068 is integrated with terahertz Quantum-Well Photodetector(QWP), and a terahertz pulse laser detection system is built. A photoelectric signal, with a pulse width of 2 μs, is successfully amplified at 8 K. The transimpterahertzedance gain is about 560 Ω. The current amplification gain is 1.78 mA/V. The above results verify the feasibility of commercial transimpedance amplifier in deep low temperature environment for the first time, and provide an effective technical means for integrated transimpedance amplifier in the field of terahertz high-speed detection and high-frequency communication.
参考文献

[1] SIEGEL P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2002,50(3):910-928.

[2] 谭智勇,曹俊诚.太赫兹光电测试技术 [M].上海:华东理工大学出版社, 2020:36-40. (TAN Zhiyong,CAO Juncheng. Terahertz photoelectric measurement technology[M]. Shanghai:East China University of Science and Technology Press, 2020:36-40.)

[3] JIANG Y, JIN B B, XU W W, et al. Terahertz detectors based on superconducting hot electron bolometers[J]. Science China Information Sciences, 2012,55(1):64-71.

[4] BEEMAN J W, GOYAL S, REICHERTZ L A, et al. Ion-implanted Ge: B far-infrared blocked-impurity-band detectors[J]. Infrared Physics and Technology, 2007,51(1):60-65.

[5] 尚竞成,王晓东,王兵兵,等.新型台面型 GaAs基 BIB探测器的背景电流测试与分析 [J].太赫兹科学与电子信息学报, 2018, 16(3):383-387. (SHANG Jingcheng,WANG Xiaodong,WANG Bingbing,et al. Background current testing and analysis of a novel mesa-type GaAs-based BIB detector[J]. Journal of Terahertz Science and Electronic Information Technology, 2018, 16(3): 383-387.)

[6] GHOBADI A, KHAN T M, Celik O O, et al. A performance-enhanced planar Schottky diode for terahertz applications: an electromagnetic modeling approach[J]. International Journal of Microwave and Wireless Technologies, 2017,9(10):1905-1913.

[7] LIU H C, LUO H, SONG C Y, et al. Terahertz quantum-well photodetector[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2004,84(20):4068-4070.

[8] LUO H,LIU H C,SONG C Y,et al. Background-limited terahertz quantum-well photodetector[J]. Applied Physics Letters, 2005, 86(23):231103.

[9] GUO X G,TAN Z Y,CAO J C,et al. Many-body effects on terahertz quantum well detectors[J]. Applied Physics Letters, 2009,94 (20):201101.

[10] FRANKE C,WALTHER M,HELM M,et al. Two-photon quantum well infrared photodetectors below 6 THz[J]. Infrared Physics & Technology, 2015(70):30-33.

[11] ZHANG R, SHAO D X, FU Z L, et al. Terahertz quantum well photodetectors with metal-grating couplers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017,23(4):3800407.

[12] GRANT P D,LAFRAMBOISE S R,DUDEK R,et al. Terahertz free space communications demonstration with quantum cascade laser and quantum well photodetector[J]. Electronics Letters, 2009,45(18):952-954.

[13] TAN Z Y, ZHOU T, CAO J C, et al. Terahertz imaging with quantum-cascade laser and quantum-well photodetector[J]. IEEE Photonics Technology Letters, 2013,25(14):1344-1346.

[14] TAN Z Y,WAN W J,CAO J C,et al. Research progress in terahertz quantum-cascade lasers and quantum-well photodetectors[J]. Chinese Physics B, 2020,29(8):084212.

[15] SCHNEIDER H,LIU H C. Quantum well infrared photodetectors[M]. Berlin:Springer Verlag, 2006:75-81.

[16] FU Z L,GU L L,GUO X G,et al. Frequency up-conversion photon-type terahertz imager[J], Scientific Reports, 2016(6):25383.

[17] PATRASHIN M, HOSAKO I. Terahertz frontside-illuminated quantum-well photodetector[J]. Optics Letters, 2008, 33(2): 168-170.

[18] 解冰清,毕津顺,李博,等.极端低温下硅基器件和电路特性研究进展 [J].微电子学, 2015,45(6):789-795. (XIE Bingqing,BI Jinshun, LI Bo, et al. The effect of cryogenic temperature characteristics on silicon-based devices and circuits[J]. Microelectronics, 2015,45(6):789-795.)

[19] 徐晨,沈光地,陈建新,等. SiGe/SiHBT发射结的寄生势垒及其对器件室温和低温特性的影响 [J].半导体学报, 2000(12): 1208-1213. (XU Chen, SHEN Guangdi, CHEN Jianxin, et al. Parasitic barrier in emitter-base junction and its effects on performance of SiGe/Si HBT at both room temperature and low temperature[J]. Chinese Journal of Semiconductors, 2000(12): 1208-1213.)

[20] 刘军,周明珠,李志芸.深冷温度毫米波低噪声放大器研究现状 [J].微电子学, 2004,48(5):672-676. (LIU Jun,ZHOU Mingzhu, LI Zhiyun,et al. Research status of deep cryogenic temperature millimeter wave low noise amplifier[J]. Microelectronics, 2004, 48(5):672-676.)

[21] GRANT P D, DUDEK R, BUCHANAN M, et al. Room-temperature heterodyne detection up to 110 GHz with a quantum-well infrared photodetector[J]. IEEE Photonics Technology Letters, 2006,18(21):2218-2220.

[22] ZHANG Z Z,FU Z L,GUO X G,et al. 4.3 THz quantum-well photodetectors with high detection sensitivity[J], Chinese Physics B, 2018,27(3):030701.

[23] TAN Z Y,WANG H Y,WAN W J,et al. Dual-beam terahertz quantum cascade laser with >1 W effective output power[J]. Electronics Letters, 2020,56(22):1204-1206.

李弘义, 谭智勇, 邵棣祥, 符张龙, 曹俊诚. 跨阻放大器低温性能及其对THz光电信号的放大应用[J]. 太赫兹科学与电子信息学报, 2023, 21(1): 16. LI Hongyi, TAN Zhiyong, SHAO Dixiang, FU Zhanglong, CAO Juncheng. Low temperature performance of transimpedance amplifier and its application in amplification of terahertz photoelectric signal[J]. Journal of terahertz science and electronic information technology, 2023, 21(1): 16.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!