电光与控制, 2023, 30 (11): , 网络出版: 2024-01-20  

考虑输入时滞及饱和的直升机IADP速度控制

Incremental Adaptive Dynamic Programming for Helicopter Velocity Control Under Input Delay and Saturation
作者单位
1 南京航空航天大学南京 211000
2 南京航空航天大学, 南京 211000
摘要
针对模型未知的直升机机动飞行过程中存在的输入时滞及饱和问题, 提出了一种无模型增量自适应最优控制方案。首先, 利用增量非线性技术得到了系统的近似时变模型, 并通过递推最小二乘估计(RLS)对相关矩阵参数进行辨识; 其次, 采用泛函性能指标处理输入时滞及饱和问题, 利用增量自适应动态规划(IADP)设计近似最优跟踪控制律; 最后, 通过神经网络近似基于实时状态和延时输入的时间差分误差(TDE)函数, 并运用其瞬时积分得到评价网络权值更新率。通过Lyapunov函数分析证明了闭环系统的稳定性。直升机机动飞行速度跟踪控制仿真验证了该方法的有效性。
Abstract
To solve the problems of input delay and saturation during helicopter maneuvering flight with uncertain model, a model-free incremental adaptive optimal control scheme is proposed.Firstly, the approximate time-varying model of the system is obtained by using incremental nonlinear technique, and the parameters of the relevant matrix are identified by Recursive Least Squares (RLS) estimation.Secondly, the functional performance indexes are used to deal with input delay and saturation, and Incremental Adaptive Dynamic Programming (IADP) is used to design the approximate optimal tracking control law.The Time Difference Error (TDE) function based on real-time state and delayed input is approximated by neural network, and the weight updating rate of the evaluation network is obtained by its instantaneous integral.Finally, the stability of the closed-loop system is proved by the Lyapunov function analysis.Simulations of helicopter maneuvering flight velocity tracking control are given to verify the effectiveness of the proposed control scheme.
参考文献

[1] HU J S, GU H B.Survey on flight control technology for large-scale helicopter[J].International Journal of Aerospace Engineering, 2017, 2017:5309403.

[2] 侯捷, 陈谋, 刘楠.基于径向基函数神经网络与扩张状态观测器的无人直升机控制[J].控制理论与应用, 2021, 38(9): 1361-1371.

[3] JEONG H H, SUK J Y, KIM B S, et al.A study on ADS-33E with application to the assessment of handling quality for unmanned rotorcraft[J].Journal of the Korean Society for Aeronautical & Space Sciences, 2012, 40(3):243-250.

[4] 刘基, 郭剑东, 梁辰雨.基于模糊自抗扰的直升机障碍滑雪机动控制[J].兵工自动化, 2022, 41(8): 67-73.

[5] 李硕, 张绍杰, 严鹏, 等.考虑输入饱和的直升机机动飞行LPV控制[J].系统工程与电子技术, 2022, 44(2): 637-643.

[6] 汪正中, 张学军, 许宁鑫, 等.直升机机动飞行逆仿真及应用[J].直升机技术, 2010(4): 1-7.

[7] 叶鹏, 刘斌, 胡勇.传感器故障下的三自由度直升机滑模控制方法[J].电光与控制, 2021, 28(12): 61-66.

[8] PAVEL M D, PERUMAL S, OLAF S, et al.Incremental nonlinear dynamic inversion for the Apache AH-64 helicopter control[J].Journal of the American Helicopter Society, 2020, 65(2):1-16.

[9] WU W.A general method for closed-loop inverse simulation of helicopter maneuver flight[J].Chinese Journal of Aeronautics, 2017, 30(6):1799-1808.

[10] YUAN Y, THOMSON, D, CHEN R L.Propeller control strategy for coaxial compound helicopters[J].Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2019, 233(10):3775-3789.

[11] KUMAR M V, SAMPATH P, SURESH S, et al.Design of a stability augmentation system for a helicopter using LQR control and ADS-33 handling qualities specifications[J].Aircraft Engineering and Aerospace Technology, 2008, 80(2):111-123.

[12] WERBOS P.Advanced forecasting methods for global crisis warning and models of intelligence[J].General Systems, 1977, 22:25-38.

[13] ZHOU Y, KAMPEN E J, CHU Q P.Incremental approximate dynamic programming for nonlinear adaptive tracking control with partial observability[J].Journal of Guidance, Control, and Dynamics, 2018, 41(12):2554-2567.

[14] ZHANG H G, CUI L L, ZHANG X, et al.Data-driven robust approximate optimal tracking control for unknown general nonlinear systems using adaptive dynamic programming method[J].IEEE Transactions on Neural Networks, 2011, 22(12):2226-2236.

[15] GAO Q, WEI X T, LI D H, et al.Tracking control for a quadrotor via dynamic surface control and adaptive dynamic programming[J].International Journal of Control, Automation and Systems, 2022, 20(1):349-363.

[16] LIU D R, XUE S, ZHAO B, et al.Adaptive dynamic programming for control:a survey and recent advances[J].IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2021, 51(1):142-160.

[17] ZHOU Y, KAMPEN E J, CHU Q P.Nonlinear adaptive flight control using incremental approximate dynamic programming and output feedback[J].Journal of Guidance, Control, and Dynamics, 2017, 40(2):489-496.

[18] PADFIELD G D.Helicopter flight dynamics:the theory and application of flying qualities and simulation modelling[M].Hoboken:John Wiley & Sons, 2008.

[19] ARTSTEIN Z.Linear systems with delayed controls:a reduction[J].IEEE Transactions on Automatic Control, 1982, 27(4):869-879.

[20] ROHOLLAH M, SARANGAPANI J.Optimal adaptive control of uncertain nonlinear continuous-time systems with input and state delays[J].IEEE Transactions on Neural Networks and Learning Systems, 2021, 34(6):3195-3204.

[21] ROHOLLAH M, SARANGAPANI J.Optimal control of linear continuous-time systems in the presence of state and input delays with application to a chemical reactor[C]//American Control Conference (ACC).Denver:IEEE, 2020:999-1004.

[22] SIMPLCIO P, PAVEL M D, KAMPEN E J, et al.An acceleration measurements-based approach for helicopter nonlinear flight control using incremental nonlinear dynamic inversion[J].Control Engineering Practice, 2013, 21(8):1065-1077.(下转第61页)

张涵, 张绍杰, 季坤. 考虑输入时滞及饱和的直升机IADP速度控制[J]. 电光与控制, 2023, 30(11): . ZHANG Han, ZHANG Shaojie, JI Kun. Incremental Adaptive Dynamic Programming for Helicopter Velocity Control Under Input Delay and Saturation[J]. Electronics Optics & Control, 2023, 30(11): .

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!