太赫兹科学与电子信息学报, 2022, 20 (3): 241, 网络出版: 2022-06-14   

太赫兹波导发展现状与展望

Recent advances in terahertz waveguide
王长 1,2,3,*郑永辉 1,2,3谭智勇 1,2,3何晓勇 4曹俊诚 1,2,3
作者单位
1 中国科学院 a.太赫兹固态技术重点实验室
2 b.上海微系统与信息技术研究所, 上海 200050
3 中国科学院大学材料与光电研究中心, 北京 100049
4 上海师范大学数理学院, 上海 200233
摘要
太赫兹波具有良好的穿透性、低能性和宽带性, 在高速空间通信、环境监测、外差探测、医学探测、无损检测和**安全等领域具有重要的应用前景。波导传输技术和功能器件是太赫兹系统不可或缺的重要组成部分, 太赫兹波导的性能决定了太赫兹系统的信号传输效率和集成度, 引起人们的研究兴趣。近年来, 太赫兹波导的发展取得了长足的进步, 从普通的金属空心波导到金属线波导、介质光纤, 再到最近的人工表面等离激元波导、石墨烯、铌酸锂等新型波导, 它们展现出了各自的优势, 令人振奋。该综述全面介绍了太赫兹波导领域的发展及研究近况, 并对其未来应用进行了展望。
Abstract
Due to the relatively good penetration, low energy and broadband properties, terahertz waves have considerable application prospects in the fields of high-speed space communications, environmental monitoring, heterodyne detection, medical detection, non-destructive testing, and national defense security. As one of the core component of terahertz active and passive devices, terahertz waveguide is an indispensable part of the terahertz application system. The performance of the waveguide structure and functional devices determines the signal transmission efficiency of the terahertz system. The integrated terahertz waveguide has an important influence on the volume of the terahertz device. In recent years the development of terahertz waveguides has made great progress, from ordinary metal hollow waveguides to metal wire waveguides, dielectric optical fibers, and then to the recent artificial surface plasmon waveguides, graphene, lithium niobate and other new waveguides. These waveguide techniques demonstrate respective and exciting advantages. This review comprehensively introduces the latest developments in the field of terahertz waveguides, and prospects for its future applications.
参考文献

[1] FERGUSON B,ZHANG X C. Materials for terahertz science and technology[J]. Nature Materials, 2002,1(1):26-33.

[2] LIU C,WANG C,CAO J C. Multipath propagation channel modeling and capacity analysis for terahertz indoor communications[J]. Journal of Optical Technology, 2017,84(1):53-61.

[3] WANG C,WANG F,CAO J C. Terahertz radiation induced chaotic electron transport in semiconductor superlattices with a tilted magnetic field[J]. Chaos:An Interdisciplinary Journal of Nonlinear Science, 2014,24(3):033109.

[4] CAO J C. Semiconductor terahertz sources,detectors and applications[M]. Beijing:Science Press, 2012.

[5] FEDERICI J F,SCHULKIN B,Huang F,et al. THz imaging and sensing for security applications-explosives,weapons and drugs[J]. Semiconductor Science and Technology, 2005,20(7):S266-S280.

[6] 张真真,黎华,曹俊诚 .高速太赫兹探测器 [J].物理学报, 2018,67(9):090702-1-090702-12. (ZHANG Zhenzhen,LI Hua,CAO Juncheng. Ultrafast terahertz detectors[J]. Acta Physica Sinica, 2018,67(9):090702-1-090702-12.)

[7] ZIMDARS D,VALDMANIS J A,WHITE J S,et al. Technology and applications of terahertz imaging nondestructive examination: inspection of space shuttle sprayed on foam insulation[J]. AIP Conference Proceedings, 2005,760(1):570-577.

[8] HU B B,NUSS M C. Imaging with terahertz waves[J]. Optics Letters, 1995,20(16):1716-1718.

[9] FITCH M J,OSIANDER R. Terahertz waves for communications and sensing[J]. Johns Hopkins APL Technical Digest, 2004,25 (4):348-355.

[10] KLEINE-OSTMANN T,NAGATSUMA T. A review on terahertz communications research[J]. Journal of Infrared Millimeter & Terahertz Waves, 2011,32(2):143-171.

[11] 姚建铨,迟楠,杨鹏飞,等 .太赫兹通信技术的研究与展望 [J].中国激光, 2009,36(9):7-27. (YAO Jianquan,CHI Nan,YANG Pengfei,et al. Study and outlook of terahertz communication technology[J]. China Journal Of Lasers, 2009,36(9):7-27.)

[12] ORDAL M A,LONG L L,BELL R J,et al. Optical properties of the metals Al,Co,Cu,Au,Fe,Pb,Ni,Pd,Pt,Ag,Ti, and W in the infrared and far infrared[J]. Applied Optics, 1983,22(7):1099-1119.

[13] MARK A O,BELL R J,ALEXANDER R W,et al. Optical properties of fourteen metals in the infrared and far infrared:Al,Co,Cu, Au,Fe,Pb,Mo,Ni,Pd,Pt,Ag,Ti,V, and W[J]. Applied Optics, 1985,24(24):4493-4499.

[14] MCGOWAN R W,GALLOT G,GRISCHKOWSKY D. Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides[J]. Optics Letters, 1999,24(20):1431-1433.

[15] GALLOT G,JAMISON S P,MCGOWAN R W,et al. Terahertz waveguides[J]. OSA publishing JOSA B, 2000,17(5):851-863.

[16] LU D M, YAO J Q, ZHENG Y, et al. Transmission characteristics of hollow metallic film-coated circular waveguide for THz radiation[J]. Laser & Infrared, 2007,37(12):1287-1289.

[17] HARRINGTON J A,PEDERSEN P,BOWDEN B F,et al. Hollow cucoated plastic waveguides for the delivery of THz radiation[C]// Terahertz and Gigahertz Electronics and Photonics IV. [S.l.]:SPIE 2005,5727:143-150.

[18] 张学文,谭智勇,陈可旺,等 .介质金属膜波导在 G波段和 4.3 THz的传输特性 [J].红外与毫米波学报, 2019,38(2):215-222. (ZHANG Xuewen,TAN Zhiyong,CHEN Kewang,et al. Transmission characteristics of dielectric-coated metallic waveguides in G band and 4.3 THz[J]. Journal of Infrared and Millimeter Waves, 2019,38(2):215-222.)

[19] MENDIS R, GRISCHKOWSKY D. Undistorted guided-wave propagation of subpicosecond terahertz pulses[J]. Optics Letters, 2001,26(11):846-848.

[20] MENDIS R,GRISCHKOWSKY D. THz interconnect with low-loss and low-group velocity dispersion[J]. IEEE Microwave and Wireless Components Letters, 2001,11(11):444-446.

[21] MENDIS R. THz transmission characteristics of dielectric-filled parallel-plate waveguides[J]. Journal of Applied Physics, 2007,101(8):083115.

[22] COOKE D G,JEPSEN P U. Optical modulation of terahertz pulses in a parallel plate waveguide[J]. Optics Express, 2008,16(19): 15123-15129.

[23] WANG K L,MITTLEMAN D M. Metal wires for terahertz wave guiding[J]. Nature, 2004,432(7015):376-379.

[24] WANG K L,MITTLEMAN D M. Guided propagation of terahertz pulses on metal wires[J]. JOSA B, 2005,22(9):2001-2008.

[25] JEON T, ZHANG J Q, GRISCHKOWSKY D. THz sommerfeld wave propagation on a single metal wire[J]. Applied Physics Letters, 2005,86(16):161904.

[26] HE X Y,CAO J C,FENG S L. Simulation of the propagation property of metal wires terahertz waveguides[J]. Chinese Physics Letters, 2006,23(8):2066-2069.

[27] JAMISON S P, MCGOWAN W, GRISCHKOWSKY D. Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers[J]. Applied Physics Letters, 2000,76(15):1987-1989.

[28] CHEN L J,CHEN H W,KAO T F,et al. Low-loss subwavelength plastic fiber for terahertz waveguiding[J]. Optics Letters, 2006, 31(3):308-310.

[29] LAI C H,HSUEH Y C,CHEN H W,et al. Low-index terahertz pipe waveguides[J]. Optics Letters, 2009,34(21):3457-3459.

[30] LU J T, HSUEH Y C, HUANG Y R, et al. Bending loss of terahertz pipe waveguides[J]. Optics Express, 2010, 18(25): 26332-26338.

[31] BAO H L,NIELSEN K,BANG O,et al. Dielectric tube waveguides with absorptive cladding for broadband,low-dispersion and low loss THz guiding[J]. Scientific Reports, 2015,5(1):1-9.

[32] YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58(20):2059-2062.

[33] SAJEEV J. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987,58(23): 2486-2489.

[34] YARIV A,XU Y,LEE R K,et al. Coupled-resonator optical waveguide:a proposal and analysis[J]. Optics Letters, 1999,24(11): 711-713.

[35] 黄昆,韩汝琦 .固体物理学 [M].北京:科学出版社, 1988. (HUANG Kun,HAN Ruqi. Solid-state physics[M]. Beijing:Science Press, 1988.)

[36] ZHANG Y,LI Z J,LI B J. Multimode interference effect and self-imaging principle in two-dimensional silicon photonic crystal waveguides for terahertz waves[J]. Optics Express, 2006,14(7):2679-2689.

[37] PONSECA Carlito S, ESTACIO Elmer, POBRE Romeric, et al. Transmission characteristics of lens-duct and photonic crystal waveguides in the terahertz region[J]. JOSA B, 2009,26(9):A95-A100.

[38] KITAGAWA J, KODAMA M, KADOYA Y. Design of two-dimensional low-dielectric photonic crystal and its terahertz waveguide application[J]. Japanese Journal of Applied Physics, 2012,51(6R):062201.

[39] TSURUDA K,FUJITA M,NAGATSUMA T. Extremely low-loss terahertz waveguide based on silicon photonic-crystal slab[J]. Optics Express, 2015,23(25):31977-31990.

[40] 司阳,陈希,陈鹤鸣 .基于二维光子晶体高Q值微波带阻滤波器 [J].太赫兹科学与电子信息学报, 2021,19(1):96-100. (SI Yang,CHEN Xi,CHEN Heming. High Q-factor microwave bandstop filter based on two-dimensional photonic crystal[J]. Journal of Terahertz Science and Electronic Information Technology, 2021,19(1):96-100.)

[41] CHEN T, SUN J Q, LI L, et al. Design of a photonic crystal waveguide for terahertz-wave difference-frequency generation[J]. IEEE Photonics Technology Letters, 2012,24(11):921-923.

[42] KNIGHT J C,BIRKS T A,ATKIN D M,et al. Pure silica single-mode fibre with hexagonal photonic crystal cladding[C]// Optical Fiber Communication Conference. San Jose,USA:[s.n.], 1996:339.

[43] CREGAN R F,MANGAN B J,KNIGHT J C,et al. Single-mode photonic band gap guidance of light in air[J]. Science, 1999,285 (5433):1537-1539.

[44] GOTO M,QUEMA A,TAKAHASHI H,et al. Teflon photonic crystal fiber as terahertz waveguide[J]. Japanese Journal of Applied Physics, 2004,43(2B):L317-L319.

[45] GOTO M,QUEMA A,TAKAHASHI H,et al. Teflon photonic crystal fiber as polarization-preserving waveguide in THz region[C]// International Conference on Ultra-fast Phenomena. Berlin:Springer, 2005:702-704.

[46] LI S P,LIU H J,HUANG N,et al. Broadband high birefringence and low dispersion terahertz photonic crystal fiber[J]. Journal of Optics, 2014,16(10):105102.

[47] MEDJOURI A,SIMOHAMED L M,ZIANE O,et al. Investigation of high birefringence and chromatic dispersion management in photonic crystal fibre with square air holes[J]. Optik, 2015,126(20):2269-2274.

[48] BHATTACHARYA R,KONAR S. Extremely large birefringence and shifting of zero dispersion wavelength of photonic crystal fibers[J]. Optics & Laser Technology, 2012,44(7):2210-2216.

[49] AGRAWAL A,KEJALAKSHMY N,UTHMAN M,et al. Ultra low bending loss equiangular spiral photonic crystal fibers in the terahertz regime[J]. AIP Advances, 2012,2(2):022140.

[50] CHEN H B, WANG H, HOU H L, et al. A terahertz single-polarization single-mode photonic crystal fiber with a rectangular array of micro-holes in the core region[J]. Optics Communications, 2012,285(18):3726-3729.

[51] HAN J W,ZHANG J,ZHAO Y L,et al. Numerical demonstration of mode-division multiplexing transmission over dual-mode photonic crystal fiber enabled by fiber couplers[J]. Optik, 2013,124(12):1287-1289.

[52] ZHANG Z G, TANG J, LUO D, et al. Research on terahertz photonic crystal fiber characteristics with high birefringence[J]. Optik, 2014,125(1):154-158.

[53] YANG J, YANG B, WANG Z, et al. Design of the low-loss wide bandwidth hollow-core terahertz inhibited coupling fibers[J]. Optics Communications, 2015,343:150-156.

[54] MISRA M,PAN Y,WILLIAMS C R,et al. Characterization of a hollow core fibre-coupled near field terahertz probe[J]. Journal of Applied Physics, 2013,113(19):193104.

[55] ISLAM S,ISLAM M R,FAISAL M,et al.Extremely low-loss,dispersion flattened porouscore photonic crystal fiber for terahertz regime[J]. Optical Engineering, 2016,55(7):076117.

[56] WU Z Q,ZHOU X Y,SHI Z H,et al. Proposal for high-birefringent terahertz photonic crystal fiber with all circle air holes[J]. Optical Engineering, 2016,55(3):037105.

[57] WOOD R W. Xlii on a remarkable case of uneven distribution of light in a diffraction grating spectrum[J]. The London, Edinburgh,and Dublin Philosophical Magazine and Journal of Science, 1902,4(21):396-402.

[58] FANO U. The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces(sommerfeld's waves)[J]. JOSA, 1941,31(3):213-222.

[59] PINES D. Collective energy losses in solids[J]. Reviews of Modern Physics, 1956,28(3):184.

[60] STERN E A,FERRELL R A. Surface plasma oscillations of a degenerate electron gas[J]. Physical Review, 1960,120(1):130.

[61] KRETSCHMANN E, RAETHER H. Radiative decay of non-radiative surface plasmons excited by light[J]. Zeitschrift Für Naturforschung, 1968,23A(12):2135-2136.

[62] OTTO A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection[J]. Zeitschrift Für Physik A Hadrons and Nuclei, 1968,216(4):398-410.

[63] BARNES W L,DEREUX A,EBBESEN T W. Surface plasmon subwavelength optics[J]. Nature, 2003,424(6950):824-830.

[64] LIU Y M,ZENTGRAF T,BARTAL G,et al. Transformational plasmonoptics[J]. Nano Letters, 2010,10(6):1991-1997.

[65] PITARKE J M,SILKIN V M,CHULKOV E V,et al. Theory of surface plasmons and surface-plasmon polaritons[J]. Reports on Progress in Physics, 2006,70(1):1-87.

[66] SHCHEGROV A V, NOVIKOV I V, MARADUDIN A A. Scattering of surface plasmon polaritons by a circularly symmetric surface defect[J]. Physical Review Letters, 1997,78(22):4269-4272.

[67] JEON T, ZHANG J Q, GRISCHKOWSKY D. THz sommerfeld wave propagation on a single metal wire[J]. Applied Physics Letters, 2005,86(16):161904.

[68] JEON T, GRISCHKOWSKY D. THz zenneck surface wave(THz surface plasmon) propagation on a metal sheet[J]. Applied Physics Letters, 2006,88(6):061113.

[69] PENDRY J B,MARTIN-MORENO L,GARCIA-VIDAL F J. Mimicking surface plasmons with structured surfaces[J]. Science, 2004,305(5685):847-848.

[70] WILLIAMS C R, ANDREWS S R, MAIER S A, et al. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces[J]. Nature Photonics, 2008,2(3):175-179.

[71] FERNANDEZ-DOMINGUEZ A I,MARTIN-MOREN L O,GARCIA-VIDAL F J,et al. Spoof surface plasmon polariton modes propagating along periodically corrugated wires[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2008,14(6):1515-1521.

[72] FERNáNDEZ-DOMíNGUEZ A I,WILLIAMS C R,GARCíA-VIDAL J,et al. Terahertz surface plasmon polaritons on a helically grooved wire[J]. Applied Physics Letters, 2008,93(14):141109.

[73] ZHANG J,CAI L K,BAI W L,et al. Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide[J]. Journal of Applied Physics, 2009,106(10):103715.

[74] GAO Z,ZHANG X F,SHEN L F. Wedge mode of spoof surface plasmon polaritons at terahertz frequencies[J]. Journal of Applied Physics, 2010,108(11):113104.

[75] SHEN X P, CUI T J, MARTIN-CANO D, et al. Conformal surface plasmons propagating on ultrathin and flexible films[J]. Proceedings of the National Academy of Sciences, 2013,110(1):40-45.

[76] XU J J,ZHANG H C,ZHANG Q,et al. Efficient conversion of surface-plasmon-like modes to spatial radiated modes[J]. Applied Physics Letters, 2015,106(2):021102.

[77] GAO X,ZHOU L,LIAO Z,et al. An ultrawideband surface plasmonic filter in microwave frequency[J]. Applied Physics Letters, 2014,104(19):191603.

[78] ZHANG H C,FAN Y F,GUO J,et al. Second-harmonic generation of spoof surface plasmon polaritons using nonlinear plasmonic metamaterials[J]. ACS Photonics, 2016,3(1):139-146.

[79] LIU Y, YAN J, SHAO Y, et al. Spoof surface plasmon polaritons based on ultrathin corrugated metallic grooves at terahertz frequency[J]. Applied Optics, 2016,55(7):1720-1724.

[80] LIU Y Q, DU C H, LIU P K. Terahertz electronic source based on spoof surface plasmons on the doubly corrugated metallic waveguide[J]. IEEE Transactions on Plasma Science, 2016,44(12):3288-3294.

[81] ISLAM M,CHOWDHURY D R,AHMAD A,et al. Terahertz plasmonic waveguide based thin film sensor[J]. Journal of Lightwave Technology, 2017,35(23):5215-5221.

[82] ZHANG Y, XU Y H, TIAN C X, et al. Terahertz spoof surface-plasmonpolariton subwavelength waveguide[J]. Photonics Research, 2018,6(1):18-23.

[83] GUO Y J, KAI D X, TANG X H. Spoof plasmonic waveguide developed from coplanar stripline for strongly confined terahertz propagation and its application in microwave filters[J]. Optics Express, 2018,26(8):10589-10598.

[84] JAISWAL R K, PANDIT N, PATHAK N P. Spoof surface plasmon polaritons based reconfigurable band-pass filter[J]. IEEE Photonics Technology Letters, 2018,31(3):218-221.

[85] XU K D, ZHANG F Y, GUO Y J, et al. Spoof surface plasmon polaritons based on balanced coplanar stripline waveguides[J]. IEEE Photonics Technology Letters, 2019,32(1):55-58.

[86] NAIR R R,BLAKE P,GRIGORENKO A N,et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008,320(5881):1308.

[87] MAK K F,SFEIR M Y,WU Y,et al. Measurement of the optical conductivity of graphene[J]. Physical Review Letters, 2008,101 (19):196405.

[88] NETO A H C,GUINEA F,PERES N M R,et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009,81:

[89] BALANDIN A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nature Materials, 2011, 10(8): 569-581.

[90] BALANDIN A A,GHOSH S,BAO W Z,et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008,8(3): 902-907.

[91] BOLOTIN K I,SIKES K J,JIANG Z F,et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008,146(9-10):351-355.

[92] KOESTER S J, LI M. Waveguide-coupled graphene optoelectronics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013,20(1):84-94.

[93] HANSON G W. Quasi-transverse electromagnetic modes supported by a graphene parallelplate waveguide[J]. Journal of Applied Physics, 2008,104(8):084314.

[94] VAKIL A,ENGHETA N. Transformation optics using graphene[J]. Science, 2011,332(6035):1291-1294.

[95] YUAN Y Z,YAO J Q,XU W. Terahertz photonic states in semiconductor-graphene cylinder structures[J]. Optics Letters, 2012, 37(5):960-962.

[96] WANG J,LU W B,LI X B,et al. Graphene plasmon guided along a nanoribbon coupled with a nanoring[J]. Journal of Physics D: Applied Physics, 2014,47(13):135106.

[97] CHEN T, WANG L L, CHEN L Q, et al. Tunable terahertz wave difference frequency generation in a graphene/algaas surface plasmon waveguide[J]. Photonics Research, 2018,6(3):186-192.

[98] HE X Q, NING T G, PEI L, et al. Tunable hybridization of graphene plasmons and dielectric modes for highly confined light transmit at terahertz wavelength[J]. Optics Express, 2019,27(5):5961-5972.

[99] ZHENG K,YUAN Y F,ZHAO L T,et al. Ultracompact, low-loss terahertz waveguide based on graphene plasmonic technology[J]. 2D Materials, 2019,7(1):015016.

[100] SI K Y, HUANG Y Y, ZHAO Q Y, et al. Terahertz surface emission from layered semiconductor wse2[J]. Applied Surface Science, 2018,448(1):416-423.

[101] XU S J,YANG J,JIANG H C,et al. Transient photoconductivity and free carrier dynamics in a monolayer ws2 probed by time resolved terahertz spectroscopy[J]. Nanotechnology, 2019,30(26):265706.

[102] 付亚州,谭智勇,王长,等 .基于单层二硫化钨光控太赫兹调制器的研究 [J].红外与毫米波学报, 2019,38(5):655-661. (FU Yazhou, TAN Zhiyong, WANG Chang, et al. Research on optical controlled terahertz modulator based on monolayer tungsten disulfide[J]. Journal of Infrared and Millimeter Waves, 2019,38(5):655-661.)

[103] ZHONG Y J,HUANG Y,ZHONG S C,et al. Tunable terahertz broadband absorber based on mos2 ring-cross array structure[J]. Optical Materials, 2021,114:110996.

[104] LU D Y,LI W,ZHOU H,et al. Black phosphorus/waveguide terahertz plasmonic structure for ultrasensitive tunable gas sensing[J]. Photonics and Nanostructures-Fundamentals and Applications, 2021,46(1):100946.

王长, 郑永辉, 谭智勇, 何晓勇, 曹俊诚. 太赫兹波导发展现状与展望[J]. 太赫兹科学与电子信息学报, 2022, 20(3): 241. WANG Chang, ZHENG Yonghui, TAN Zhiyong, HE Xiaoyong, CAO Juncheng. Recent advances in terahertz waveguide[J]. Journal of terahertz science and electronic information technology, 2022, 20(3): 241.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!