人工晶体学报, 2023, 52 (2): 289, 网络出版: 2023-03-18  

基于第一性原理的单层WS2热输运特性研究

First-Principles Investigation on Thermal Transport Properties of Monolayer WS2
作者单位
北京石油化工学院机械工程学院,北京 102617
摘要
二维WS2是一种层状过渡金属硫化物,因其具有特殊的层状结构、可调带隙及稳定的物理化学性质而备受关注。结合玻尔兹曼输运方程(BTE)和密度泛函理论(DFT),利用第一性原理研究了单层WS2声子的输运特性,分析了声子的谐性效应和非谐性效应对WS2晶格热导率的影响机理,计算了其声子的临界平均自由程,提出通过调整阻断频率的方法来调控WS2的晶格热导率。研究结果表明:单层WS2在300 K时的本征晶格热导率为149.12 W/(m·K),且随温度的升高而降低;从各声子支对总热导率的贡献来看,声学声子支起主要作用,特别是纵向声学(longitudinal acoustic, LA)声子支对单层WS2热导率的贡献百分比最大(44.28%);单层WS2声学声子支和光学声子支之间的较大带隙(声光学声子支之间无散射)导致其具有较高的晶格热导率。本文研究可为基于单层WS2纳米电子器件的设计和改进提供借鉴和理论指导。
Abstract
As one kind of layered transition metal sulfides, Two-dimensional WS2 has attracted much attention because of its special layered structure, tunable band gap and stable physicochemical properties. Combining Boltzmann transport equation (BTE) and density functional theory (DFT), the phonon transport properties of monolayer WS2 were investigated by first-principles. The harmonic and anharmonic effects of phonons to the lattice thermal conductivity of WS2 were analyzed. The critical mean free path of phonon for WS2 was calculated, which demonstrated that the thermal conductivity of WS2 could be regulated by adjusting the frequency. The results show that the intrinsic lattice thermal conductivity of monolayer WS2 is 149.12 W/(m·K) at 300 K, and it will decrease with the increase of temperature. The acoustic phonon branches play a major role among all phonon branches to the total thermal conductivity of monolayer WS2, especially the longitudinal acoustic (LA) branch whose contribution percentage is 44.28%. There is a big band gap (no scattering) between the acoustic and optical branches, which is found to be responsible for the higher lattice thermal conductivity of monolayer WS2. This investigation could provide a reference and theoretical guidance for the design and improvement of monolayer WS2 based nano-electronic devices.
参考文献

[1] WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699-712.

[2] JO S, UBRIG N, BERGER H, et al. Mono- and bilayer WS2 light-emitting transistors[J]. Nano Letters, 2014, 14(4): 2019-2025.

[3] OVCHINNIKOV D, ALLAIN A, HUANG Y S, et al. Electrical transport properties of single-layer WS2[J]. ACS Nano, 2014, 8(8): 8174-8181.

[4] SOLANKI G K, GUJARATHI D N, DESHPANDE M P, et al. Transport property measurements in tungsten sulphoselenide single crystals grown by a CVT technique[J]. Crystal Research and Technology, 2008, 43(2): 179-185.

[5] PISONI A, JACIMOVIC J, GAáL R, et al. Anisotropic transport properties of tungsten disulfide[J]. Scripta Materialia, 2016, 114: 48-50.

[6] SINGH V K, PENDURTHI R, NASR J R, et al. Study on the growth parameters and the electrical and optical behaviors of 2D tungsten disulfide[J]. ACS Applied Materials & Interfaces, 2020, 12(14): 16576-16583.

[7] JIA Z Y, XIANG J Y, WEN F S, et al. Enhanced photoresponse of SnSe-nanocrystals-decorated WS2 monolayer phototransistor[J]. ACS Applied Materials & Interfaces, 2016, 8(7): 4781-4788.

[8] CHOUDHARY N, LI C, CHUNG H S, et al. High-performance one-body core/shell nanowire supercapacitor enabled by conformal growth of capacitive 2D WS2 layers[J]. ACS Nano, 2016, 10(12): 10726-10735.

[9] SETHULEKSHMI A S, JAYAN J S, SARITHA A, et al. Insights into the reinforcibility and multifarious role of WS2 in polymer matrix[J]. Journal of Alloys and Compounds, 2021, 876: 160107.

[10] AMINI M, AZADEGAN B, AKBARZADEH H, et al. Analysis of MoS2 and WS2 nano-layers role on the radiation resistance of various Cu/MS2/Cu and Cu/MS2@Cu@MS2/Cu nanocomposites[J]. Materialia, 2022, 21: 101281.

[11] ABID, SEHRAWAT P, JULIEN C M, et al. E-textile based wearable thermometer from WS2-quantum dots[J]. Nanotechnology, 2021, 32(33): 335503.

[12] KRESSE G. Ab initio molecular dynamics for liquid metals[J]. Journal of Non-Crystalline Solids, 1995, 192/193: 222-229.

[13] KRESSE G, FURTHMüLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, Condensed Matter, 1996, 54(16): 11169-11186.

[14] BLCHL P E, JEPSEN O, ANDERSEN O K. Improved tetrahedron method for Brillouin-zone integrations[J]. Physical Review B, 1994, 49(23): 16223-16233.

[15] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.

[16] BARONI S, DE GIRONCOLI S, DAL CORSO A, et al. Phonons and related crystal properties from density-functional perturbation theory[J]. Reviews of Modern Physics, 2001, 73(2): 515-562.

[17] LI W, CARRETE J, KATCHO N A, et al. ShengBTE: a solver of the Boltzmann transport equation for phonons[J]. Computer Physics Communications, 2014, 185(6): 1747-1758.

[18] HONG Y, ZHANG J C, ZENG XIAO CHENG. Thermal conductivity of monolayer MoSe2 and MoS2[J]. The Journal of Physical Chemistry C, 2016, 120(45): 26067-26075.

[19] PENG B, ZHANG H, SHAO H Z, et al. Towards intrinsic phonon transport in single-layer MoS2[J]. Annalen Der Physik, 2016, 528(6): 504-511.

[20] PEIMYOO N, SHANG J Z, YANG W H, et al. Thermal conductivity determination of suspended mono- and bilayer WS2 by Raman spectroscopy[J]. Nano Research, 2015, 8(4): 1210-1221.

[21] JIANG P Q, QIAN X, GU X K, et al. Probing anisotropic thermal conductivity of transition metal dichalcogenides MX2 (M=Mo, W and X=S, Se) using time-domain thermoreflectance[J]. Advanced Materials, 2017, 29(36): 1701068.

[22] YU Y F, MINHAJ T, HUANG L J, et al. In-plane and interfacial thermal conduction of two-dimensional transition-metal dichalcogenides[J]. Physical Review Applied, 2020, 13(3): 034059.

[23] GERTYCH A P, CZERNIAK-OSIEWICZ K, APIN'SKA A, et al. Phonon and thermal properties of thin films made from WS2 mono- and few-layer flakes[J]. The Journal of Physical Chemistry C, 2021, 125(26): 14446-14452.

[24] ZHANG Y F, LV Q, FAN A R, et al. Reduction in thermal conductivity of monolayer WS2 caused by substrate effect[J]. Nano Research, 2022, 15(10): 9578-9587.

[25] SANG Y X, GUO J Y, CHEN H, et al. Measurement of thermal conductivity of suspended and supported single-layer WS2 using micro-photoluminescence spectroscopy[J]. The Journal of Physical Chemistry C, 2022, 126(15): 6637-6645.

[26] LINDSAY L, BROIDO D A, MINGO N. Flexural phonons and thermal transport in graphene[J]. Physical Review B, 2010, 82(11): 115427.

[27] GONZE X, LEE C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory[J]. Physical Review B, 1997, 55(16): 10355-10368.

[28] FULTZ B. Vibrational thermodynamics of materials[J]. Progress in Materials Science, 2010, 55(4): 247-352.

[29] HUANG L F, CAO T F, GONG P L, et al. Isotope effects on the vibrational, Invar, and Elinvar properties of pristine and hydrogenated graphene[J]. Solid State Communications, 2014, 190: 5-9.

[30] MOUNET N, MARZARI N. First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives[J]. Physical Review B, 2005, 71(20): 205214.

[31] WU X F, VARSHNEY V, LEE J, et al. Hydrogenation of penta-graphene leads to unexpected large improvement in thermal conductivity[J]. Nano Letters, 2016, 16(6): 3925-3935.

[32] SCHELLING P K, PHILLPOT S R, KEBLINSKI P. Comparison of atomic-level simulation methods for computing thermal conductivity[J]. Physical Review B, 2002, 65(14): 144306.

关斌, 刘远超, 张厚梁, 钟建斌, 邵钶, 蒋旭浩, 徐一帆. 基于第一性原理的单层WS2热输运特性研究[J]. 人工晶体学报, 2023, 52(2): 289. GUAN Bin, LIU Yuanchao, ZHANG Houliang, ZHONG Jianbin, SHAO Ke, JIANG Xuhao, XU Yifan. First-Principles Investigation on Thermal Transport Properties of Monolayer WS2[J]. Journal of Synthetic Crystals, 2023, 52(2): 289.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!