光电工程, 2023, 50 (3): 220322, 网络出版: 2023-05-04   

飞秒激光直写加工SERS基底及其应用 下载: 726次

Femtosecond laser direct writing processing of SERS substrates and applications
作者单位
1 合肥工业大学仪器科学与光电工程学院,安徽 合肥 230009
2 中国科学技术大学工程科学学院,安徽 合肥 230026
引用该论文

尹智东, 倪才鼎, 吴思竹, 劳召欣. 飞秒激光直写加工SERS基底及其应用[J]. 光电工程, 2023, 50(3): 220322.

Zhidong Yin, Caiding Ni, Sizhu Wu, Zhaoxin Lao. Femtosecond laser direct writing processing of SERS substrates and applications[J]. Opto-Electronic Engineering, 2023, 50(3): 220322.

参考文献

[1] Zong C, Xu M X, Xu L J, et alSurface-enhanced Raman spectroscopy for Bioanalysis: reliability and challengesChem Rev2018118104946498010.1021/acs.chemrev.7b00668

[2] Xu K C, Wang Z Y, Tan C F, et alUniaxially stretched flexible surface Plasmon resonance film for versatile surface enhanced Raman scattering diagnosticsACS Appl Mater Interfaces2017931263412634910.1021/acsami.7b06669

[3] Xu K C, Zhou R, Takei K, Hong M HToward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnosticsAdv Sci (Weinh)2019616190092510.1002/advs.201900925

[4] Niu R J, Gao F, Wang D, et alPattern recognition directed assembly of Plasmonic gap nanostructures for single-molecule SERSACS Nano2022169146221463110.1021/acsnano.2c05150

[5] Lee S, Jung I, Son J, et alHeterogeneous component Au (Outer)-Pt (Middle)-Au (Inner) Nanorings: synthesis and vibrational characterization on middle Pt Nanorings with surface-enhanced Raman scatteringACS Nano2022167112591126710.1021/acsnano.2c04633

[6] Qin M, Ge M H, Li P, et alNatural <3 nm interbedded gaps to trap target molecules and provide an enhanced Raman spectroscopy methodAdv Opt Mater20221019220055110.1002/adom.202200551

[7] Lao Z X, Zheng Y Y, Dai Y C, et alNanogap plasmonic structures fabricated by switchable capillary-force driven self-assembly for localized sensing of anticancer medicines with microfluidic SERSAdv Funct Mater20203015190946710.1002/adfm.201909467

[8] He J, Hua S Y, Zhang D X, et alSERS/NIR‐II optical nanoprobes for multidimensional tumor imaging from living subjects, pathology, and single cells and guided NIR‐II photothermal therapyAdv Funct Mater20223246220802810.1002/adfm.202208028

[9] Sun J Y, Song Y N, Wang M Y, et alQuantitative and noninvasive detection of SAH-related MiRNA in cerebrospinal fluids in vivo using SERS sensors based on acupuncture-based technologyACS Appl Mater Interfaces20221432370883710010.1021/ACSAMI.2C03436

[10] Andreiuk B, Nicolson F, Clark L M, et alDesign and synthesis of gold nanostars-based SERS nanotags for bioimaging applicationsNanotheranostics202261103010.7150/ntno.61244

[11] Van Der Hoeven J E S, Gurunarayanan H, Bransen M, et alSilica‐coated gold nanorod supraparticles: a tunable platform for surface enhanced Raman spectroscopyAdv Funct Mater20223227220014810.1002/adfm.202200148

[12] Li C, Li S, Qu A, et alDirecting arrowhead Nanorod dimers for MicroRNA in situ Raman detection in living cellsAdv Funct Mater20203022200145110.1002/adfm.202001451

[13] Meyer S M, Murphy C JAnisotropic silica coating on gold nanorods boosts their potential as SERS sensorsNanoscale202214135214522610.1039/D1NR07918B

[14] Lu Y C, Tseng P C, Yang M J, et alFabrication of Gyroid‐structured metal/semiconductor nanoscaffolds with ultrasensitive SERS detection via block copolymer TemplatingAdv Opt Mater2023112220228010.1002/adom.202202280

[15] Zhang H, Duan S, Radjenovic P M, et alCore-shell nanostructure-enhanced Raman spectroscopy for surface catalysisAcc Chem Res202053472973910.1021/acs.accounts.9b00545

[16] Zhang Y J, Chen S, Radjenovic P, et alProbing the location of 3D hot spots in gold nanoparticle films using surface-enhanced Raman spectroscopyAnal Chem20199185316532210.1021/acs.analchem.9b00200

[17] Phuong NTT, Dang VQ, Van Hieu L, et alFunctionalized silver nanoparticles for SERS amplification with enhanced reproducibility and for ultrasensitive optical fiber sensing in environmental and biochemical assaysRSC Adv20221248313523136210.1039/D2RA06074D

[18] Wang T J, Barveen N R, Liu Z Y, et alTransparent, flexible plasmonic Ag NP/PMMA substrates using chemically patterned ferroelectric crystals for detecting pesticides on curved surfacesACS Appl Mater Interfaces20211329349103492210.1021/acsami.1c08233

[19] Anh N H, Doan M Q, Dinh N X, et alGold nanoparticle-based optical nanosensors for food and health safety monitoring: recent advances and future perspectivesRSC Adv20221218109501098810.1039/D1RA08311B

[20] Wang D, Bao L P, Li H J, et alPolydopamine stabilizes silver nanoparticles as a SERS substrate for efficient detection of myocardial infarctionNanoscale202214166212621910.1039/D2NR00091A

[21] Wang X K, Park S G, Ko J, et alSensitive and reproducible immunoassay of multiple mycotoxins using surface-enhanced Raman scattering mapping on 3D plasmonic nanopillar arraysSmall20181439180162310.1002/smll.201801623

[22] Liu Y, Guang J Y, Liu C, et alSimple and low‐cost plasmonic fiber‐optic probe as SERS and biosensing platformAdv Opt Mater2019719190033710.1002/adom.201900337

[23] Mogera U, Guo H, Namkoong M, et alWearable plasmonic paper–based microfluidics for continuous sweat analysisSci Adv2022812eabn173610.1126/sciadv.abn1736

[24] Ma Z C, Zhang Y L, Han B, et alFemtosecond-laser direct writing of metallic micro/nanostructures: from fabrication strategies to future applicationsSmall Methods201827170041310.1002/smtd.201700413

[25] Sugioka K, Cheng YUltrafast lasers—reliable tools for advanced materials processingLight Sci Appl201434e14910.1038/lsa.2014.30

[26] Wu D, Xu J, Niu L G, et alIn-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell countingLight Sci Appl201541e22810.1038/lsa.2015.1

[27] Kawata S, Sun H B, Tanaka T, et alFiner features for functional microdevicesNature2001412684869769810.1038/35089130

[28] Zhou W P, Bai S, Xie Z W, et alResearch progress of laser direct writing fabrication of metal and carbon micro/nano structures and devicesOpto-Electron Eng2022491210330

    周伟平, 白石, 谢祖武, 等激光直写制备金属与碳材料微纳结构与器件研究进展光电工程2022491210330

[29] 廖嘉宁, 张东石, 李铸国飞秒激光制备柔性电子器件进展光电工程2022492210388

    Liao J N, Zhang D S, Li Z GAdvance in femtosecond laser fabrication of flexible electronicsOpto-Electron Eng2022492210388

[30] Luo X, Pan R, Cai M Y, et alAtto-Molar Raman detection on patterned superhydrophilic-superhydrophobic platform via localizable evaporation enrichmentSens Actuators B Chem202132612882610.1016/j.snb.2020.128826

[31] Xu L M, Liu H G, Zhou H, et alOne-step fabrication of metal nanoparticles on polymer film by femtosecond LIPAA method for SERS detectionTalanta202122812220410.1016/j.talanta.2021.122204

[32] Xu B B, Ma Z C, Wang L, et alLocalized flexible integration of high-efficiency surface enhanced Raman scattering (SERS) monitors into microfluidic channelsLab Chip201111193347335110.1039/c1lc20397e

[33] Langer J, De Aberasturi D J, Aizpurua J, et alPresent and future of surface-enhanced Raman scatteringACS Nano20201412811710.1021/acsnano.9b04224

[34] Fleischmann M, Hendra P J, McQuillan A JRaman spectra of pyridine adsorbed at a silver electrodeChem Phys Lett197426216316610.1016/0009-2614(74)85388-1

[35] Jeanmaire D L, Van Duyne R PSurface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrodeJ Electroanal Chem Interfac Electrochem197784112010.1016/S0022-0728(77)80224-6

[36] Lee H K, Lee Y H, Koh C S L, et alDesigning surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: emerging opportunities in analyte manipulations and hybrid materialsChem Soc Rev201948373175610.1039/C7CS00786H

[37] Stiles P L, Dieringer J A, Shah N C, et alSurface-enhanced Raman spectroscopyAnnu Rev Anal Chem2008160162610.1146/annurev.anchem.1.031207.112814

[38] Ding S Y, You E M, Tian Z Q, et alElectromagnetic theories of surface-enhanced Raman spectroscopyChem Soc Rev201746134042407610.1039/C7CS00238F

[39] Phan-Quang G C, Lee H K, Phang I Y, et alPlasmonic colloidosomes as three-dimensional SERS platforms with enhanced surface area for multiphase sub-microliter toxin sensingAngew Chem Int Ed201554339691969510.1002/anie.201504027

[40] Cardinal M F, Ende E V, Hackler R A, et alExpanding applications of SERS through versatile nanomaterials engineeringChem Soc Rev201746133886390310.1039/C7CS00207F

[41] Im H, Bantz K C, Lee S H, et alSelf-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensingAdv Mater201325192678268510.1002/adma.201204283

[42] Whitney A V, Elam J W, Zou S L, et alLocalized surface Plasmon resonance Nanosensor: a high-resolution distance-dependence study using atomic layer depositionJ Phys Chem B200510943205222052810.1021/jp0540656

[43] Guselnikova O, Lim H, Kim H J, et alNew trends in nanoarchitectured SERS substrates: nanospaces, 2D materials, and organic heterostructuresSmall20221825210718210.1002/smll.202107182

[44] Yang X, Ileri N, Larson C C, et alNanopillar array on a fiber facet for highly sensitive surface-enhanced Raman scatteringOpt Express20122022248192482610.1364/OE.20.024819

[45] Lin D D, Wu Z L, Li S J, et alLarge-area au-nanoparticle-functionalized Si nanorod arrays for spatially uniform surface-enhanced Raman spectroscopyACS Nano20171121478148710.1021/acsnano.6b06778

[46] Tian Y, Wang H F, Yan L Q, et alA generalized methodology of designing 3D SERS probes with superior detection limit and uniformity by maximizing multiple coupling effectsAdv Sci (Weinh)2019611190017710.1002/advs.201900177

[47] Luo X J, Xing Y F, Galvan D D, et alPlasmonic gold Nanohole array for surface-enhanced Raman scattering detection of DNA methylationACS Sens2019461534154210.1021/acssensors.9b00008

[48] Köker T, Tang N, Tian C, et alCellular imaging by targeted assembly of hot-spot SERS and photoacoustic nanoprobes using split-fluorescent protein scaffoldsNat Commun20189160710.1038/s41467-018-03046-w

[49] Tian L, Su M K, Yu F F, et alLiquid-state quantitative SERS analyzer on self-ordered metal liquid-like plasmonic arraysNat Commun201891364210.1038/s41467-018-05920-z

[50] Fan J A, Wu C, Bao K, et alSelf-assembled plasmonic nanoparticle ClustersScience201032859821135113810.1126/science.1187949

[51] Ma Y, Sikdar D, Fedosyuk A, et alElectrotunable nanoplasmonics for amplified surface enhanced raman spectroscopyACS Nano202014132833610.1021/acsnano.9b05257

[52] Yap F L, Thoniyot P, Krishnan S, et alNanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibersACS Nano2012632056207010.1021/nn203661n

[53] Dong Z H, Liu Y, Qin Y Y, et alFabrication of fiber SERS probes by laser-induced self-assembly method in a meniscus and its applications in trace detection of pesticide residuesChin J Lasers201845818118710.3788/CJL201845.0804009

    董子豪, 刘晔, 秦琰琰, 等激光诱导液面自组装法制备光纤SERS探针及其农残检测应用中国激光201845818118710.3788/CJL201845.0804009

[54] 李春赫, 马卓晨, 胡昕宇, 等微流控拉曼检测芯片的制备与应用中国激光2021482020201010.3788/CJL202148.0202010

    Li C H, Ma Z C, Hu X Y, et alPreparation and application of microfluidic Raman detection chipChin J Lasers2021482020201010.3788/CJL202148.0202010

[55] Hu M, Ou F S, Wu W, et alGold nanofingers for molecule trapping and detectionJ Am Chem Soc201013237128201282210.1021/ja105248h

[56] Liu F X, Song B X, Su G X, et alMolecule sensing: sculpting extreme electromagnetic field enhancement in free space for molecule sensingSmall20181433187015210.1002/smll.201870152

[57] Park S G, Mun C, Xiao X F, et alSurface energy-controlled SERS substrates for molecular concentration at plasmonic nanogapsAdv Funct Mater20172741170337610.1002/adfm.201703376

[58] Zhu C H, Meng G W, Zheng P, et alA hierarchically ordered array of silver-nanorod bundles for surface-enhanced Raman scattering detection of phenolic pollutantsAdv Mater201628244871487610.1002/adma.201506251

[59] Song B X, Jiang Z H, Liu Z R, et alProbing the mechanisms of strong fluorescence enhancement in plasmonic nanogaps with sub-nanometer precisionACS Nano20201411147691477810.1021/acsnano.0c01973

[60] Wu K Y, Li T, Schmidt M S, et alGold nanoparticles sliding on recyclable nanohoodoos-engineered for surface-enhanced Raman spectroscopyAdv Funct Mater2018282170481810.1002/adfm.201704818

[61] Macias-Montero M, Peláez R J, Rico V J, et alLaser treatment of Ag@ZnO nanorods as long-life-span SERS surfacesACS Appl Mater Interfaces2015742331233910.1021/am506622x

[62] Xu K C, Yan H P, Tan C F, et alHedgehog inspired CuO nanowires/Cu2O composites for broadband visible-light-driven recyclable surface enhanced Raman scatteringAdv Opt Mater201867170116710.1002/adom.201701167

[63] Gurbatov S O, Modin E, Puzikov V, et alBlack Au-decorated TiO2 produced via laser ablation in liquidACS Appl Mater Interfaces20211356522653110.1021/acsami.0c20463

[64] Momma C, Chichkov B N, Nolte S, et alShort-pulse laser ablation of solid targetsOpt Commun19961291–213414210.1016/0030-4018(96)00250-7

[65] Gattass R R, Mazur EFemtosecond laser micromachining in transparent materialsNat Photon20082421922510.1038/nphoton.2008.47

[66] Küper S, Stuke MAblation of uv-transparent materials with femtosecond uv excimer laser pulsesMicroelectron Eng19899147548010.1016/0167-9317(89)90104-4

[67] Küper S, Stuke MAblation of polytetrafluoroethylene (Teflon) with femtosecond UV excimer laser pulsesAppl Phys Lett19895414610.1063/1.100831

[68] Lim T W, Son Y, Jeong Y J, et alThree-dimensionally crossing manifold micro-mixer for fast mixing in a short channel lengthLab Chip201111110010310.1039/C005325M

[69] Raimondi M T, Eaton S M, Nava M M, et alTwo-photon laser polymerization: from fundamentals to biomedical application in tissue engineering and regenerative medicineJ Appl Biomater Funct Mater2012101566610.5301/JABFM.2012.9278

[70] Ran P, Jiang L, Li X, et alFemtosecond photon-mediated plasma enhances photosynthesis of plasmonic nanostructures and their SERS applicationsSmall20191511180489910.1002/smll.201804899

[71] Xu B B, Xia H, Niu L G, et alFlexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless platingSmall20106161762176610.1002/smll.201000511

[72] Xu B B, Zhang R, Liu X Q, et alOn-chip fabrication of silver microflower arrays as a catalytic microreactor for allowing in situ SERS monitoringChem Commun (Camb)201248111680168210.1039/C2CC16612G

[73] Ma Z C, Zhang Y L, Han B, et alFemtosecond laser direct writing of plasmonic Ag/Pd alloy nanostructures enables flexible integration of robust SERS substratesAdv Mater Technol201726160027010.1002/admt.201600270

[74] Yan W J, Yang L K, Chen J N, et alIn situ two-step photoreduced SERS materials for on-chip single-molecule spectroscopy with high reproducibilityAdv Mater20172936170289310.1002/adma.201702893

[75] Luo Z J, Zeng Z H, Liu Z Y, et alCluster-enabled patterning of copper nanostructures from aqueous solution using a femtosecond laserNanotechnology2022335050530110.1088/1361-6528/ac8c4a

[76] Bai S, Serien D, Hu A M, et al3D microfluidic surface-enhanced Raman spectroscopy (SERS) chips fabricated by all-femtosecond-laser-processing for real-time sensing of toxic substancesAdv Funct Mater20182823170626210.1002/adfm.201706262

[77] MacKenzie M, Chi H N, Varma M, et alFemtosecond laser fabrication of silver nanostructures on glass for surface enhanced Raman spectroscopySci Rep2019911705810.1038/s41598-019-53328-6

[78] Geng Y F, Yin Z, Tan X L, et alFemtosecond laser ablated polymer SERS fiber probe with photoreduced deposition of silver nanoparticlesIEEE Photon J2016851610.1109/JPHOT.2016.2606640

[79] Xu Y W, Geng Y F, Wang L N, et alFemtosecond laser ablated pyramidal fiber taper-SERS probe with laser-induced silver nanostructuresJ Phys D Appl Phys2018512828510410.1088/1361-6463/aacab2

[80] Vorobyev A Y, Guo C LDirect femtosecond laser surface nano/microstructuring and its applicationsLaser Photon Rev20137338540710.1002/lpor.201200017

[81] Eesley G LObservation of nonequilibrium electron heating in copperPhys Rev Lett198351232140214310.1103/PhysRevLett.51.2140

[82] Fujimoto J G, Liu J M, Ippen E P, et alFemtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperaturesPhys Rev Lett198453191837184010.1103/PhysRevLett.53.1837

[83] Elsayed-Ali H E, Norris T B, Pessot M A, et alTime-resolved observation of electron-phonon relaxation in copperPhys Rev Lett198758121212121510.1103/PhysRevLett.58.1212

[84] Oguri K, Okano Y, Nishikawa T, et alDynamics of femtosecond laser ablation studied with time-resolved x-ray absorption fine structure imagingPhys Rev B2009791414410610.1103/PhysRevB.79.144106

[85] Glover T E, Ackerman G D, Lee R W, et alMetal–insulator transitions in an expanding metallic fluid: particle formation during femtosecond laser ablationChem Phys20042992–317118110.1016/j.chemphys.2003.11.042

[86] Amoruso S, Bruzzese R, Vitiello M, et alExperimental and theoretical investigations of femtosecond laser ablation of aluminum in vacuumJ Appl Phys200598404490710.1063/1.2032616

[87] Oguri K, Okano Y, Nishikawa T, et alDynamical study of femtosecond-laser-ablated liquid-aluminum nanoparticles using spatiotemporally resolved x-ray-absorption fine-structure spectroscopyPhys Rev Lett2007991616500310.1103/PhysRevLett.99.165003

[88] Amoruso S, Bruzzese R, Wang X, et alFemtosecond laser ablation of nickel in vacuumJ Phys D Appl Phys200740233134010.1088/0022-3727/40/2/008

[89] Zavestovskaya I N, Kanavin A P, Men’kova N ACrystallization of metals under conditions of superfast cooling when materials are processed with ultrashort laser pulsesJ Opt Technol200875635335810.1364/JOT.75.000353

[90] Hisey C L, Mitxelena-Iribarren O, Martínez-Calderón M, et alA versatile cancer cell trapping and 1D migration assay in a microfluidic deviceBiomicrofluidics201913404410510.1063/1.5103269

[91] Chang H W, Tsai Y C, Cheng C W, et alNanostructured Ag surface fabricated by femtosecond laser for surface-enhanced Raman scatteringJ Colloid Interface Sci2011360130530810.1016/j.jcis.2011.04.005

[92] Luo X B, Liu W J, Chen C H, et alFemtosecond laser micro-Nano structured Ag SERS substrates with unique sensitivity, uniformity and stability for food safety evaluationOpt Laser Technol202113910696910.1016/j.optlastec.2021.106969

[93] Lu L B, Zhang J R, Jiao L S, et alLarge-scale fabrication of nanostructure on bio-metallic substrate for surface enhanced Raman and fluorescence scatteringNanomaterials (Basel)20199791610.3390/nano9070916

[94] Zhang W D, Li C, Gao K, et alSurface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulseNanotechnology2018292020530110.1088/1361-6528/aab294

[95] Long J Y, Cao Z, Lin C H, et alFormation mechanism of hierarchical Micro- and nanostructures on copper induced by low-cost nanosecond lasersAppl Surf Sci201946441242110.1016/j.apsusc.2018.09.055

[96] Harilal S S, Bindhu C V, Tillack M S, et alInternal structure and expansion dynamics of laser ablation plumes into ambient gasesJ Appl Phys20039352380238810.1063/1.1544070

[97] Cai M Y, Pan R, Liu W J, et alLaser-assisted doping and architecture engineering of Fe3O4 nanoparticles for highly enhanced oxygen evolution reactionChemSusChem201912153562357010.1002/cssc.201901020

[98] Dileep M, Majumdar J DShort and ultrashort laser surface processing of Alpha + Beta titanium alloy (Ti6Al4V): Present statusTrans. Indian Natl Acad Eng20227385187110.1007/s41403-022-00333-3

[99] Aggarwal R L, Farrar L W, Diebold E D, et alMeasurement of the absolute Raman scattering cross section of the 1584-cm-1 band of benzenethiol and the surface-enhanced Raman scattering cross section enhancement factor for femtosecond laser-nanostructured substratesJ Raman Spectrosc20094091331133310.1002/jrs.2396

[100] Jiang L, Ying D W, Li X, et alTwo-step femtosecond laser pulse train fabrication of nanostructured substrates for highly surface-enhanced Raman scatteringOpt Lett201237173648365010.1364/OL.37.003648

[101] Han Y K, Lan X W, Wei T, et alSurface enhanced Raman scattering silica substrate fast fabrication by femtosecond laser pulsesAppl Phys A200997372172410.1007/s00339-009-5306-z

[102] Buividas R, Fahim N, Juodkazytė J, et alNovel method to determine the actual surface area of a laser-nanotextured sensorAppl Phys A2014114116917510.1007/s00339-013-8129-x

[103] Aleknavičienė I, Pabrėža E, Talaikis M, et alLow-cost SERS substrate featuring laser-ablated amorphous nanostructureAppl Surf Sci202157115124810.1016/j.apsusc.2021.151248

[104] Botta R, Eiamchai P, Horprathum M, et al3D structured laser engraves decorated with gold nanoparticle SERS chips for paraquat herbicide detection in environmentsSens Actuat B Chem202030412732710.1016/j.snb.2019.127327

[105] Li Z H, Hu J, Jiang L, et alShaped femtosecond laser-regulated deposition sites of galvanic replacement for simple preparation of large-area controllable noble metal nanoparticlesAppl Surf Sci202257915212310.1016/j.apsusc.2021.152123

[106] Xu L M, Liu H G, Chua T C, et alFabrication of SERS substrates by femtosecond LIPAA for detection of contaminants in foodsOpt Laser Technol202215110795410.1016/j.optlastec.2022.107954

[107] Chu F J, Yan S, Zheng J G, et alA simple laser ablation-assisted method for fabrication of superhydrophobic SERS substrate on teflon filmNanoscale Res Lett201813124410.1186/s11671-018-2658-3

[108] Yu J, Wu J G, Yang H, et alExtremely sensitive SERS sensors based on a femtosecond laser-fabricated superhydrophobic/-philic microporous platformACS Appl Mater Interfaces20221438438774388510.1021/acsami.2c10381

[109] Li Y, Liu H G, Hong M HHigh-quality sapphire microprocessing by dual-beam laser induced plasma assisted ablationOpt Express20202856242625010.1364/OE.381268

[110] Rahman T U, Rehman Z U, Ullah S, et alLaser-induced plasma-assisted ablation (LIPAA) of glass: Effects of the laser fluence on plasma parameters and crater morphologyOpt Technol201912010576810.1016/j.optlastec.2019.105768

[111] Saraeva I N, Kudryashov S I, Lednev V N, et alSingle- and multishot femtosecond laser ablation of silicon and silver in air and liquid environments: Plume dynamics and surface modificationAppl Surf Sci201947657658610.1016/j.apsusc.2019.01.092

[112] Allahyari E, Nivas J J J, Valadan M, et alPlume shielding effects in ultrafast laser surface texturing of silicon at high repetition rate in airAppl Surf Sci201948812813310.1016/j.apsusc.2019.05.219

[113] Weng Z Y, Ting C S, Lee T KMobile spin bags and their interaction in the spin-density-wave backgroundPhys Rev B19904141990200210.1103/PhysRevB.41.1990

[114] Zhizhchenko A, Kuchmizhak A, Vitrik O, et alOn-demand concentration of an analyte on laser-printed polytetrafluoroethyleneNanoscale20181045214142142410.1039/C8NR06119J

[115] Yan Z X, Zhang Y L, Wang W, et alSuperhydrophobic SERS substrates based on silver-coated reduced graphene oxide gratings prepared by two-beam laser interferenceACS Appl Mater Interfaces2015749270592706510.1021/acsami.5b09128

[116] Wang A D, Jiang L, Li X W, et alLow-adhesive superhydrophobic surface-enhanced Raman spectroscopy substrate fabricated by femtosecond laser ablation for ultratrace molecular detectionJ Mater Chem B20175477778410.1039/C6TB02629J

[117] Hu X Y, Pan R, Cai M Y, et alUltrafast laser micro-Nano structured superhydrophobic Teflon surfaces for enhanced SERS detection via evaporation concentrationAdv Opt Technol202091–28910010.1515/aot-2019-0072

[118] Gan Z S, Cao Y Y, Evans R A, et alThree-dimensional deep sub-diffraction optical beam lithography with 9 nm feature sizeNat Commun20134206110.1038/ncomms3061

[119] Cox N, Wei J X, Pattanaik H, et alNondegenerate two-photon absorption in GaAs/AlGaAs multiple quantum well waveguidesPhys Rev Res2020201337610.1103/PhysRevResearch.2.013376

[120] Wang Z K, Sugioka K, Midorikawa KFabrication of integrated microchip for optical sensing by femtosecond laser direct writing of Foturan glassAppl Phys A200893122522910.1007/s00339-008-4664-2

[121] Xie Z W, Feng S F, Wang P J, et alDemonstration of a 3D Radar-Like SERS Sensor Micro- and Nanofabricated on an Optical FiberAdv Opt Mater2015391232123910.1002/adom.201500041

[122] Kim J A, Wales D J, Thompson A J, et alFiber‐Optic SERS probes fabricated using two‐photon polymerization for rapid detection of bacteriaAdv Opt Mater202089190193410.1002/adom.201901934

[123] Kyeremateng N A, Brousse T, Pech DMicrosupercapacitors as miniaturized energy-storage components for on-chip electronicsNat Nanotechnol201712171510.1038/nnano.2016.196

[124] Zhu B W, Wang H, Leow W R, et alSilk fibroin for flexible electronic devicesAdv Mater201628224250426510.1002/adma.201504276

[125] Chandra D, Yang S, Soshinsky A A, et alBiomimetic ultrathin whitening by capillary-force-induced random clustering of hydrogel micropillar arraysACS Appl Mater& Interfaces2009181698170410.1021/am900253z

[126] Lao Z X, Pan D, Yuan H W, et alMechanical-tunable capillary-force-driven self-assembled hierarchical structures on soft substrateACS Nano20181210101421015010.1021/acsnano.8b05024

尹智东, 倪才鼎, 吴思竹, 劳召欣. 飞秒激光直写加工SERS基底及其应用[J]. 光电工程, 2023, 50(3): 220322. Zhidong Yin, Caiding Ni, Sizhu Wu, Zhaoxin Lao. Femtosecond laser direct writing processing of SERS substrates and applications[J]. Opto-Electronic Engineering, 2023, 50(3): 220322.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!