人工晶体学报, 2023, 52 (1): 41, 网络出版: 2023-03-18  

高温扩散法制备B-S共掺杂单晶金刚石

Preparation of B-S Co-Doped Single Crystal Diamond by High Temperature Diffusion Method
作者单位
山东理工大学机械工程学院,淄博 255000
摘要
利用高纯度的硼粉和硫粉,在1 300 ℃的高温真空环境下,通过扩散装置制备出硼(B)、硫(S)共掺杂单晶金刚石。扫描电子显微镜、X射线能谱、拉曼光谱等测试结果表明,随着两种元素的掺入,金刚石的形貌和晶体质量发生变化。掺杂后的金刚石形貌复杂,蚀坑和沟壑内部形貌呈阶梯状,随着掺杂量的增加出现断层,并在蚀坑处检测出较高的硼原子和硫原子含量,掺杂B-S质量比为0.5的金刚石蚀坑处的硼原子和硫原子含量最高。随着杂质原子的渗入,拉曼半峰全宽值增大,金刚石的晶体质量下降。室温下进行霍尔检测结果表明,掺杂后的金刚石电阻率降低。B-S质量比为1和2的样品导电类型表现为p型;B-S质量比为0.5时,样品的霍尔系数为负值,导电类型为n型。
Abstract
The boron (B)-sulfur (S) co-doped single crystal diamond was prepared by diffusion device using high purity boron powder and sulfur powder at 1 300 ℃ under a high temperature vacuum. In this paper, scanning electron microscopy, X-ray energy spectroscopy, Raman spectroscopy, and other tests show that the morphology and crystal quality of diamond change with doping of the two elements. The co-doping diamond crystal surface morphology is complex, and the internal morphology of etch pits and gully is stepped. With the doping amount increases, the steps appear to fracture, and high content of boron and sulfur atoms is detected at the etch pits. The diamond with B-S mass fraction of 0.5 have the highest content of boron and sulfur atoms at the etch pits. With the impurity atoms infiltration, full width at half maximum of Raman increases, and crystal quality of the diamond decreases. Hall testing at room temperature reveals that the diamond resistivity decreases after doping. The samples with the B-S mass fraction of 1 and 2 exhibit p-type conductivity. While the sample with the B-S mass fraction of 0.5, the Hall coefficient is negative and shows n-type conductivity.
参考文献

[1] 赵正平.超宽禁带半导体金刚石功率电子学研究的新进展[J].半导体技术,2021,46(1):1-14.

[2] 陆益敏,黄国俊,程 勇,等.脉冲激光沉积无氢钨掺杂类金刚石膜的摩擦与机械性能[J].物理学报,2021,70(4):046801.

[3] TIWARI S K, PANDEY R, WANG N N, et al. Progress in diamanes and diamanoids nanosystems for emerging technologies[J]. Advanced Science, 2022, 9(11): e2105770.

[4] 李尚升,许安涛,王生艳,等.N型半导体金刚石的研究现状与展望[J].人工晶体学报,2016,45(11):2728-2734+2740.

[5] SONIN V, TOMILENKO A, ZHIMULEV E, et al. The composition of the fluid phase in inclusions in synthetic HPHT diamonds grown in system Fe-Ni-Ti-C[J]. Scientific Reports, 2022, 12: 1246.

[6] 李 勇,王 应,李尚升,等.硼硫协同掺杂金刚石的高压合成与电学性能研究[J].物理学报,2019,68(9):098101.

[7] FANG C, JIA X P, CHEN N, et al. HPHT synthesis of N-H co-doped diamond single crystals[J]. Journal of Crystal Growth, 2016, 436: 34-39.

[8] YAN X B, WEI J J, AN KANG, et al. High temperature surface graphitization of CVD diamond films and analysis of the kinetics mechanism[J]. Diamond and Related Materials, 2021, 120: 108647.

[9] PINAULT-THAURY M A, TEMGOUA S, GILLET R, et al. Phosphorus-doped (113) CVD diamond: a breakthrough towards bipolar diamond devices[J]. Applied Physics Letters, 2019, 114(11): 112106.

[10] 王艳丰,王宏兴.MPCVD单晶金刚石生长及其电子器件研究进展[J].人工晶体学报,2020,49(11):2139-2152.

[11] DAI Y, LONG R, HUANG B B, et al. Effect of boron on the superconducting transition of heavily doped diamond[J]. Diamond and Related Materials, 2007, 16(2): 353-358.

[12] ZOU Y M, LARSSON K. Effect of boron doping on the CVD growth rate of diamond[J]. The Journal of Physical Chemistry C, 2016, 120(19): 10658-10666.

[13] GAO N, LI X, YU H Y, et al. A comparable study of structural models and donor levels for S doping and B-S co-doping in diamond[J]. Physica B: Condensed Matter, 2021, 618: 413138.

[14] ZHAO S N, LARSSON K. First principle study of the attachment of graphene onto non-doped and doped diamond (111)[J]. Diamond and Related Materials, 2016, 66: 52-60.

[15] LI S S, WANG J K, HU M H, et al. The first principle study and experimental of boron synergistic sulfur doping in diamond[J]. Materials Today Communications, 2020, 24: 101021.

[16] 陈 宁.硫(氢)掺杂金刚石单晶的高压合成及金刚石色心研究[D].长春:吉林大学,2018.

[17] WANG J K, LI S S, CUI J L, et al. N-type large single crystal diamond with S doping and B-S co-doping grown in FeNi-C system[J]. International Journal of Refractory Metals and Hard Materials, 2019, 81: 100-110.

[18] CAI Y, ZHANG T H, ANDERSON A B, et al. The origin of shallow n-type conductivity in boron-doped diamond with H or S co-doping: density functional theory study[J]. Diamond and Related Materials, 2006, 15(11/12): 1868-1877.

[19] EATON S C, ANDERSON A B, ANGUSJC, et al. Diamond growth in the presence of boron and sulfur[J]. Diamond and Related Materials, 2003, 12(10/11): 1627-1632.

[20] 张 贺.硼硫共掺杂n型金刚石大单晶研究[D].焦作:河南理工大学,2017.

[21] TANG L, YUE R F, WANG Y. et al. N-type B-S co-doping and S doping in diamond from first principles[J]. Carbon, 2018, 130: 458-465.

[22] ZHANG J, LI R B, WANG X H, et al. Study on the microstructure and electrical properties of boron and sulfur codoped diamond films deposited using chemical vapor deposition[J]. Journal of Nanomaterials, 2014: 109869.

[23] 张 娜.含硼金刚石单晶的微观品质与半导体性能的相关性研究[D].济南:山东大学,2010.

[24] 陈孝洲.高温高压下掺S体系中金刚石的合成与研究[D].焦作:河南理工大学,2009.

张瑞, 于文强. 高温扩散法制备B-S共掺杂单晶金刚石[J]. 人工晶体学报, 2023, 52(1): 41. ZHANG Rui, YU Wenqiang. Preparation of B-S Co-Doped Single Crystal Diamond by High Temperature Diffusion Method[J]. Journal of Synthetic Crystals, 2023, 52(1): 41.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!