人工晶体学报, 2023, 52 (6): 931, 网络出版: 2023-08-13  

异质外延单晶金刚石及其相关电子器件的研究进展

Research Progress of Heteroepitaxial Single-Crystal Diamond and Related Electronic Devices
陈根强 1,2,*赵浠翔 1,2于众成 1,2李政 1,2魏强 1,2林芳 1,2王宏兴 1,2
作者单位
1 西安交通大学, 电子物理于器件教育部重点实验室, 西安 710049
2 西安交通大学电子与信息学部, 宽禁带半导体与量子器件研究所, 西安 710049
摘要
相较于传统的硅材料, 宽禁带半导体材料更适合制作高压、高频、高功率的半导体器件, 被认为是后摩尔时代材料创新的关键角色。单晶金刚石拥有大禁带宽度、高热导率、高迁移率等优异特性, 更是下一代大功率、高频电子器件的理想半导体材料。然而由于可获得单晶金刚石的尺寸较小, 且价格昂贵, 极大地阻碍了金刚石的发展。历经长时间的探索, 异质外延生长技术成为了获得高质量、大面积单晶金刚石的有效手段。本综述从金刚石异质外延的衬底选择、生长机理以及质量改善等方面对近些年来异质外延单晶金刚石的发展进行详细介绍。进一步地, 对基于异质外延单晶金刚石的场效应晶体管和二极管的研究进行了总结, 说明了异质外延单晶金刚石在电子器件领域的巨大潜力。最后总结了异质外延单晶金刚石仍需面对的挑战, 展望了其在未来的应用与发展前景。
Abstract
Compared with traditional silicon materials, wide-band gap semiconductors are more suitable for making high voltage, high-frequency and high-power semiconductor devices, and are considered to be the key role of material innovation in the post-Moore era. Single-crystal diamond (SCD) has superiorities of wide-band gap, extremely high thermal conductivity and high mobility, and is expected to develop high-power, high-frequency electronic devices. However, the limitation of SCD wafer size and ultra-expensive price obstructed its promotion. After a long-time exploration, heteroepitaxy technology is recognized as an effective approach to obtain high-quality and large-size SCD wafer. This review introduces the development of heteroepitaxial SCD in detail, in aspects of substrate selection, growth mechanism and quality improvement. Furthermore, the investigations of field-effect transistors and diodes based on heteroepitaxial SCD are summarized, indicating the great potential of heteroepitaxial SCD in electronic device field. Finally, the challenges of heteroepitaxial technology are pointed out, and the potential applications are anticipated.
参考文献

[1] ISBERG J, HAMMERSBERG J, JOHANSSON E, et al. High carrier mobility in single-crystal plasma-deposited diamond[J]. Science, 2002, 297(5587): 1670-1672.

[2] YU X X, ZHOU J J, QI C J, et al. A high frequency hydrogen-terminated diamond MISFET with fT/fmax of 70/80 GHz[J]. IEEE Electron Device Letters, 2018, 39(9): 1373-1376.

[3] IMANISHI S, HORIKAWA K, OI N, et al. 3.8 W/mm RF power density for ALD Al2O3-based two-dimensional hole gas diamond MOSFET operating at saturation velocity[J]. IEEE Electron Device Letters, 2018, 40(2): 279-282.

[4] TSAO J Y, CHOWDHURY S, HOLLIS M A, et al. Ultrawide-bandgap semiconductors: research opportunities and challenges[J]. Advanced Electronic Materials, 2018, 4(1): 1600501.

[5] KASU M. Diamond epitaxy: basics and applications[J]. Progress in Crystal Growth and Characterization of Materials, 2016, 62(2): 317-328.

[6] MOKUNO Y, CHAYAHARA A, SODA Y, et al. Synthesizing single-crystal diamond by repetition of high rate homoepitaxial growth by microwave plasma CVD[J]. Diamond and Related Materials, 2005, 14(11/12): 1743-1746.

[7] YAMADA H, CHAYAHARA A, MOKUNO Y, et al. A 2-in. mosaic wafer made of a single-crystal diamond[J]. Applied Physics Letters, 2014, 104(10): 102110.

[8] DU H H, LIU Z H, HAO L, et al. High-performance E-mode p-channel GaN FinFET on silicon substrate with high ION/IOFF and high threshold voltage[J]. IEEE Electron Device Letters, 2022, 43(5): 705-708.

[9] ROMANCZYK B, LI W Y, GUIDRY M, et al. N-polar GaN-on-sapphire deep recess HEMTs with high W-band power density[J]. IEEE Electron Device Letters, 2020, 41(11): 1633-1636.

[10] OHTSUKA K, SUZUKI K, SAWABE A, et al. Epitaxial growth of diamond on iridium[J]. Japanese Journal of Applied Physics, 1996, 35(8B): L1072.

[11] SCHRECK M, HRMANN F, ROLL H, et al. Diamond nucleation on iridium buffer layers and subsequent textured growth: a route for the realization of single-crystal diamond films[J]. Applied Physics Letters, 2001, 78(2): 192-194.

[12] SCHRECK M, GSELL S, BRESCIA R, et al. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers[J]. Scientific Reports, 2017, 7(1): 1-8.

[13] LIAO K J, WANG W L, FENG B. Effect of nucleation rate on heteroepitaxial diamond growth on Si (100) via electron-emission-enhanced nucleation by hot filament chemical vapor deposition[J]. Physica Status Solidi (a), 1998, 167(1): 117-123.

[14] ZHAO S J, HUANG J, ZHOU X Y, et al. Highly dispersible diamond nanoparticles for pretreatment of diamond films on Si substrate[J]. Applied Surface Science, 2018, 434: 260-264.

[15] GAO F, JIA X P, MA H A, et al. Hetero-epitaxial diamond single crystal growth on surface of cBN single crystals at high pressure and high temperature[J]. Chinese Physics Letters, 2008, 25(6): 2273-2276.

[16] WANG C X, GAO C X, ZHANG T C, et al. Preparation of p-n junction diode by B-doped diamond film grown on Si-doped c-BN[J]. Chinese Physics Letters, 2002, 19(10): 1513-1515.

[17] HAYASHI Y, MATSUSHITA Y, SOGA T, et al. The formation of a (111) texture of the diamond film on Pt/TiO2/SiOx/Si substrate by microwave plasma chemical vapor deposition[J]. Diamond and Related Materials, 2002, 11(3/4/5/6): 499-503.

[18] SITAR Z, LIU W, YANG P C, et al. Heteroepitaxial nucleation of diamond on nickel[J]. Diamond and Related Materials, 1998, 7(2/3/4/5): 276-282.

[19] ITO S, NAGAI M, MATSUMOTO T, et al. Self-separation of freestanding diamond films using graphite interlayers precipitated from C-dissolved Ni substrates[J]. Journal of Crystal Growth, 2017, 470: 104-107.

[20] KAWARADA H, WILD C, HERRES N, et al. Heteroepitaxial growth of highly oriented diamond on cubic silicon carbide[J]. Journal of Applied Physics, 1997, 81(8): 3490-3493.

[21] KAWARADA H, SUESADA T, NAGASAWA H. Heteroepitaxial growth of smooth and continuous diamond thin films on silicon substrates via high quality silicon carbide buffer layers[J]. Applied Physics Letters, 1995, 66(5): 583-585.

[22] VERSTRAETE M J, CHARLIER J C. Why is iridium the best substrate for single crystal diamond growth?[J]. Applied Physics Letters, 2005, 86(19): 191917.

[23] TSUBOTA T, OHTA M, KUSAKABE K, et al. Heteroepitaxial growth of diamond on an iridium (100) substrate using microwave plasma-assisted chemical vapor deposition[J]. Diamond and Related Materials, 2000, 9(7): 1380-1387.

[24] SCHRECK M, ROLL H, STRITZKER B. Diamond/Ir/SrTiO3: a material combination for improved heteroepitaxial diamond films[J]. Applied Physics Letters, 1999, 74(5): 650-652.

[25] KIM S W, KAWAMATA Y, TAKAYA R, et al. Growth of high-quality one-inch free-standing heteroepitaxial (001) diamond on (11-20) sapphire substrate[J]. Applied Physics Letters, 2020, 117(20): 202102.

[26] WEI Q, LIN F, WANG R Z, et al. Heteroepitaxy growth of single crystal diamond on Ir/Pd/Al2O3 (11-20) substrate[J]. Materials Letters, 2021, 303: 130483.

[27] FAN L S, JACOBS C B, ROULEAU C M, et al. Stabilizing Ir(001) epitaxy on yttria-stabilized zirconia using a thin Ir seed layer grown by pulsed laser deposition[J]. Crystal Growth & Design, 2017, 17(1): 89-94.

[28] FUJISAKI T, TACHIKI M, TANIYAMA N, et al. Fabrication of heteroepitaxial diamond thin films on Ir(001)/MgO(001) substrates using antenna-edge-type microwave plasma-assisted chemical vapor deposition[J]. Diamond and Related Materials, 2002, 11(3/4/5/6): 478-481.

[29] FUJISAKI T, TACHIKI M, TANIYAMA N, et al. Initial growth of heteroepitaxial diamond on Ir (001)/MgO (001) substrates using antenna-edge-type microwave plasma assisted chemical vapor deposition[J]. Diamond and Related Materials, 2003, 12(3/4/5/6/7): 246-250.

[30] HRMANN F, ROLL H, SCHRECK M, et al. Epitaxial Ir layers on SrTiO3 as substrates for diamond nucleation: deposition of the films and modification in the CVD environment[J]. Diamond and Related Materials, 2000, 9(3/4/5/6): 256-261.

[31] ARNAULT J C, SCHULL G, MERMOUX M, et al. BEN-HFCVD effects on diamond nucleation on iridium: a Raman imaging study[J]. Physica Status Solidi (a), 2005, 202(11): 2073-2078.

[32] GSELL S, BAUER T, GOLDFU J, et al. A route to diamond wafers by epitaxial deposition on silicon via iridium/yttria-stabilized zirconia buffer layers[J]. Applied Physics Letters, 2004, 84(22): 4541-4543.

[33] FISCHER M, GSELL S, SCHRECK M, et al. Preparation of 4-inch Ir/YSZ/Si(001) substrates for the large-area deposition of single-crystal diamond[J]. Diamond and Related Materials, 2008, 17(7/8/9/10): 1035-1038.

[34] BAUER T, GSELL S, SCHRECK M, et al. Growth of epitaxial diamond on silicon via iridium/SrTiO3 buffer layers[J]. Diamond and Related Materials, 2005, 14(3/4/5/6/7): 314-317.

[35] WEI Q, NIU G, WANG R Z, et al. Heteroepitaxy of single crystal diamond on Ir buffered KTaO3 (001) substrates[J]. Applied Physics Letters, 2021, 119(9): 092104.

[36] WHITFIELD M D, JACKMAN R B, FOORD J S. Spatially resolved optical emission spectroscopy of the secondary glow observed during biasing of a microwave plasma[J]. Vacuum, 2000, 56(1): 15-23.

[37] REGMI M, MORE K, ERES G. A narrow biasing window for high density diamond nucleation on Ir/YSZ/Si(100) using microwave plasma chemical vapor deposition[J]. Diamond and Related Materials, 2012, 23: 28-33.

[38] SCHRECK M, SCHURY A, HRMANN F, et al. Mosaicity reduction during growth of heteroepitaxial diamond films on iridium buffer layers: experimental results and numerical simulations[J]. Journal of Applied Physics, 2002, 91(2): 676-685.

[39] WUU D S, WU H W, CHEN S T, et al. Defect reduction of laterally regrown GaN on GaN/patterned sapphire substrates[J]. Journal of Crystal Growth, 2009, 311(10): 3063-3066.

[40] WASHIYAMA S, MITA S, SUZUKI K, et al. Coalescence of epitaxial lateral overgrowth-diamond on stripe-patterned nucleation on Ir/MgO(001)[J]. Applied Physics Express, 2011, 4(9): 095502.

[41] ANDO Y, KAMANO T, SUZUKI K, et al. Epitaxial lateral overgrowth of diamonds on iridium by patterned nucleation and growth method[J]. Japanese Journal of Applied Physics, 2012, 51(9R): 090101.

[42] ICHIKAWA K, KODAMA H, SUZUKI K, et al. Effect of stripe orientation on dislocation propagation in epitaxial lateral overgrowth diamond on Ir[J]. Diamond and Related Materials, 2017, 72: 114-118.

[43] ICHIKAWA K, KURONE K, KODAMA H, et al. High crystalline quality heteroepitaxial diamond using grid-patterned nucleation and growth on Ir[J]. Diamond and Related Materials, 2019, 94: 92-100.

[44] TANG Y H, GOLDING B. Stress engineering of high-quality single crystal diamond by heteroepitaxial lateral overgrowth[J]. Applied Physics Letters, 2016, 108(5): 052101.

[45] MEHMEL L, ISSAOUI R, BRINZA O, et al. Dislocation density reduction using overgrowth on hole arrays made in heteroepitaxial diamond substrates[J]. Applied Physics Letters, 2021, 118(6): 061901.

[46] AIDA H, KIM S W, IKEJIRI K, et al. Fabrication of freestanding heteroepitaxial diamond substrate via micropatterns and microneedles[J]. Applied Physics Express, 2016, 9(3): 035504.

[47] NAGAI M, NAKANISHI K, TAKAHASHI H, et al. Anisotropic diamond etching through thermochemical reaction between Ni and diamond in high-temperature water vapour[J]. Scientific Reports, 2018, 8(1): 1-8.

[48] KANEKO J H, FUJITA F, KONNO Y, et al. Growth and evaluation of self-standing CVD diamond single crystals on off-axis (001) surface of HP/HT type IIa substrates[J]. Diamond and Related Materials, 2012, 26: 45-49.

[49] KLEIN O, MAYR M, FISCHER M, et al. Propagation and annihilation of threading dislocations during off-axis growth of heteroepitaxial diamond films[J]. Diamond and Related Materials, 2016, 65: 53-58.

[50] KIM S W, TAKAYA R, HIRANO S, et al. Two-inch high-quality (001) diamond heteroepitaxial growth on sapphire (11-20) misoriented substrate by step-flow mode[J]. Applied Physics Express, 2021, 14(11): 115501.

[51] OHMAGARI S, YAMADA H, TSUBOUCHI N, et al. Large reduction of threading dislocations in diamond by hot-filament chemical vapor deposition accompanying W incorporations[J]. Applied Physics Letters, 2018, 113(3): 032108.

[52] SITTIMART P, OHMAGARI S, YOSHITAKE T. Enhanced in-plane uniformity and breakdown strength of diamond Schottky barrier diodes fabricated on heteroepitaxial substrates[J]. Japanese Journal of Applied Physics, 2021, 60(SB): SBBD05.

[53] ALEKSOV A, KUBOVIC M, KAEB N, et al. Diamond field effect transistors: concepts and challenges[J]. Diamond and Related Materials, 2003, 12(3/4/5/6/7): 391-398.

[54] MAIER F, RIEDEL M, MANTEL B, et al. Origin of surface conductivity in diamond[J]. Physi Rev Lett, 2000,85(16): 3472.

[55] KASU M, HIRAMA K, HARADA K, et al. Study on capacitance-voltage characteristics of diamond field-effect transistors with NO2 hole doping and Al2O3 gate insulator layer[J]. Japanese Journal of Applied Physics, 2016, 55(4): 041301.

[56] TAKAGI Y, SHIRAISHI K, KASU M, et al. Mechanism of hole doping into hydrogen terminated diamond by the adsorption of inorganic molecule[J]. Surface Science, 2013, 609: 203-206.

[57] CRAWFORD K G, CAO L, QI D C, et al. Enhanced surface transfer doping of diamond by V2O5 with improved thermal stability[J]. Applied Physics Letters, 2016, 108(4): 042103.

[58] ZHANG J F, REN Z Y, ZHANG J C, et al. Characterization and mobility analysis of MoO3-gated diamond MOSFET[J]. Japanese Journal of Applied Physics, 2017, 56(10): 100301.

[59] CRAWFORD K G, MAINI I, MACDONALD D A, et al. Surface transfer doping of diamond: a review[J]. Progress in Surface Science, 2021, 96(1): 100613.

[60] SAHA N C, OISHI T, KIM S, et al. 145-MW/cm2 heteroepitaxial diamond MOSFETs with NO2 p-type doping and an Al2O3 passivation layer[J]. IEEE Electron Device Letters, 2020, 41(7): 1066-1069.

[61] SAHA N C, KIM S W, OISHI T, et al. 345-MW/cm2 2608-V NO2 p-type doped diamond MOSFETs with an Al2O3 passivation overlayer on heteroepitaxial diamond[J]. IEEE Electron Device Letters, 2021, 42(6): 903-906.

[62] CHEN G Q, WANG W, LIN F, et al. Electrical characteristics of diamond MOSFET with 2DHG on a heteroepitaxial diamond substrate[J]. Materials, 2022, 15(7): 2557.

[63] SAHA N C, KIM S W, OISHI T, et al. 875-MW/cm2 low-resistance NO2 p-type doped chemical mechanical planarized diamond MOSFETs[J]. IEEE Electron Device Letters, 2022, 43(5): 777-780.

[64] SAHA N C, KIM S W, OISHI T, et al. 3326-V modulation-doped diamond MOSFETs[J]. IEEE Electron Device Letters, 2022, 43(8): 1303-1306.

[65] SAHA N C, KIM S W, KOYAMA K, et al. 3659-V NO2 p-type doped diamond MOSFETs on misoriented heteroepitaxial diamond substrates[J]. IEEE Electron Device Letters, 2023, 44(1): 112-115.

[66] TAKEUCHI D, MAKINO T, KATO H, et al. Free exciton luminescence from a diamond p-i-n diode grown on a substrate produced by heteroepitaxy[J]. Physica Status Solidi (a), 2014, 211(10): 2251-2256.

[67] KAWASHIMA H, NOGUCHI H, MATSUMOTO T, et al. Electronic properties of diamond Schottky barrier diodes fabricated on silicon-based heteroepitaxially grown diamond substrates[J]. Applied Physics Express, 2015, 8(10): 104103.

[68] ARNAULT J C, LEE K H, DELCHEVALRIE J, et al. Epitaxial diamond on Ir/SrTiO3/Si (001): from sequential material characterizations to fabrication of lateral Schottky diodes[J]. Diamond and Related Materials, 2020, 105: 107768.

[69] KWAK T, LEE J, CHOI U, et al. Diamond Schottky barrier diodes fabricated on sapphire-based freestanding heteroepitaxial diamond substrate[J]. Diamond and Related Materials, 2021, 114: 108335.

[70] WEIPPERT J, REINKE P, BENKHELIFA F, et al. Pseudovertical Schottky diodes on heteroepitaxially grown diamond[J]. Crystals, 2022, 12(11): 1626.

[71] KWAK T, HAN S H, CHOI U, et al. Diamond Schottky barrier diode fabricated on high-crystalline quality misoriented heteroepitaxial (001) diamond substrate[J]. Diamond and Related Materials, 2023, 133: 109750.

[72] SAHA N C, IRIE Y, SEKI Y, et al. 1651-V all-ion-implanted Schottky barrier diode on heteroepitaxial diamond with 3.6×105 on/off ratio[J]. IEEE Electron Device Letters, 2023, 44(2): 293-296.

陈根强, 赵浠翔, 于众成, 李政, 魏强, 林芳, 王宏兴. 异质外延单晶金刚石及其相关电子器件的研究进展[J]. 人工晶体学报, 2023, 52(6): 931. CHEN Genqiang, ZHAO Xixiang, YU Zhongcheng, LI Zheng, WEI Qiang, LIN Fang, WANG Hongxing. Research Progress of Heteroepitaxial Single-Crystal Diamond and Related Electronic Devices[J]. Journal of Synthetic Crystals, 2023, 52(6): 931.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!