激光生物学报, 2021, 30 (6): 489, 网络出版: 2022-02-11  

低强度激光治疗技术在“三高”中的应用和研究进展

Application and Research Progress of Low Level Laser Therapy Technology in “Three Highs”
作者单位
华南师范大学生物光子学研究院国家中医药管理局中医药与光子技术三级实验室, 广州 510631
摘要
低强度激光治疗(LLLT)是一种通过低强度激光照射相关皮肤、穴位等人体部位治疗心脑血管疾病、缓解疼痛、促进伤口愈合的新型物理方法。它能够刺激线粒体呼吸链的复合物Ⅳ(细胞色素c氧化酶)并增加腺苷三磷酸酯、活性氧化物、一氧化氮等物质的合成, 有助于定向调节细胞行为。高血压、高血糖和高血脂(三高)是最常见的血液疾病, 其导致的血液各参数的变化将引起其他脏器功能异常。目前, “三高”的发病群体数量日益增加, 患者偏年轻化, 因此迫切需要一种便携有效的治疗技术来应对该疾病。近年来研究发现, LLLT在血液系统疾病中有明显的作用, 能有效降低高血压。此外, LLLT还可以调节血糖, 并对因血糖过高导致的相关并发症起到一定的改善, 同时还可调节血脂的浓度, 但更多的应用侧重于前两者。这种治疗技术具有无创和便携等优势, 因此有望成为新的治疗方法。本文将对有关LLLT技术在“三高”中的应用及相关的机制进行综述。
Abstract
Low level laser therapy (LLLT) is a new type of physical therapy that uses low level laser to irradiate relevant skin, acupoints and other parts of the human body to treat cardiovascular and cerebrovascular diseases, relieve pain, and promote healing. It can stimulate the complex IV (cytochrome c oxidase) of the mitochondrial respiratory chain and increase the synthesis of adenosine-triphosphate, reactive oxygen species, NO and other substances, helping to regulate cell behavior in a targeted manner. The hypertension, hyperglycemia and hyperlipidemia (three highs) are the most common blood diseases. The changes in various blood parameters caused by it can easily cause other organ dysfunctions. At present, the number of “three highs” disease groups is increasing, and the patients are younger, hence, there is an urgent need for a portable and effective treatment technique to deal with the disease. In recent years, studies have found that LLLT also has a significant effect on blood system diseases and can effectively reduce high blood pressure. In addition, LLLT can also adjust blood sugar and have a certain therapeutic effect on related complications caused by high blood sugar. At the same time, it can also adjust the concentration of blood lipids, whereas more applications focus on the first two. This kind of treatment has the advantage of non-invasiveness and portability, hence, it is expected to become a new treatment method. This article will review the application of LLLT in the “three highs” and related mechanisms.
参考文献

[1] PRICE R S, KASNER S E. Hypertension and hypertensive encephalopathy[J]. Handbook of Clinical Neurology, 2014, 119: 161-167.

[2] XIA Y, KELLEMS R E. Angiotensin receptor agonistic autoantibodies and hypertension: preeclampsia and beyond[J]. Circulation Research, 2013, 113(1): 78-87.

[3] DOYLE A E. Hypertension and vascular disease[J]. American Journal of Hypertension, 1991, 4(2 Pt 2): 103s-106s.

[4] YU J N, CUNNINGHAM J A, THOUIN S R, et al. Hyperlipidemia[J]. Primary Care, 2000, 27(3): 541-587.

[5] YILMAZ S, SEN F, OZEKE O, et al. The relationship between vitamin D levels and nondipper hypertension[J]. Blood Pressure Monitoring, 2015, 20(6): 330-334.

[6] BRATHWAITE L, REIF M. Hypertensive emergencies: a review of common presentations and treatment options[J]. Cardiology Clinics, 2019, 37(3): 275-286.

[7] LAAKSO E L, HONA T, GABRIELLI VASSAO P, et al. Effect of transcutaneous radial artery photobiomodulation on continuous measures of interstitial glucose in a single subject: a brief report[J]. Photobiomodul Photomed Laser Surgery, 2021, 39(10): 637-641.

[8] SILVA T, FRAGOSO Y D, DESTRO RODRIGUES M F S, et al. Effects of photobiomodulation on interleukin-10 and nitrites in individuals with relapsing-remitting multiple sclerosis-randomized clinical trial[J]. PLoS One, 2020, 15(4): e0230551.

[9] SZYMCZYSZYN A, DOROSZKO A, SZAHIDEWICZ-KRUPSKA E, et al. Effect of the transdermal low-level laser therapy on endothelial function[J]. Lasers in Medical Science, 2016, 31(7): 1301-1307.

[10] ISABELLA A P J, SILVA J T C, DA SILVA T, et al. Effect of irradiation with intravascular laser on the hemodynamic variables of hypertensive patients: study protocol for prospective blinded randomized clinical trial[J]. Medicine (Baltimore), 2019, 98(14): e15111.

[11] DA SILVA T, DA SILVA F C, GOMES A O, et al. Effect of photobiomodulation treatment in the sublingual, radial artery region, and along the spinal column in individuals with multiple sclerosis: protocol for a randomized, controlled, double-blind, clinical trial[J]. Medicine (Baltimore), 2018, 97(19): e0627.

[12] KOPAEVA V G, DRJAGINA O B, KOPAEV S Y. Capabilities of remote laser homeostasis of the conjunctiva and sclera[J]. Vestnik Oftalmologii, 2020, 136(2): 44-48.

[13] SALOMAO M Q, WILSON S E. Femtosecond laser in laser in situ keratomileusis[J]. Journal of Cataract and Refractive Surgery, 2010, 36(6): 1024-1032.

[14] KAHVECIOGLU F, KAHRAMAN K, AKMAN H, et al. Effects of Er:YAG laser treatment on the mineral content and morphology of primary tooth enamel[J]. Photomedicine and Laser Surgery, 2018, 36(12): 680-686.

[15] SUZUKI S S, GARCEZ A S, REESE P O, et al. Effects of corticopuncture (CP) and low-level laser therapy (LLLT) on the rate of tooth movement and root resorption in rats using micro-CT evaluation[J]. Lasers in Medical Science, 2018, 33(4): 811-821.

[16] VARELLA A M, REVANKAR A V, PATIL A K. Low-level laser therapy increases interleukin-1β in gingival crevicular fluid and enhances the rate of orthodontic tooth movement[J]. American Journal of Orthodontics and Dentofacial Orthopedics, 2018, 154(4): 535-544.e5.

[17] CHINNADURAI S, SATHE N A, SURAWICZ T. Laser treatment of infantile hemangioma: a systematic review[J]. Lasers in Surgery and Medicine, 2016, 48(3): 221-233.

[18] AMAROLI A, FERRANDO S, BENEDICENTI S. Photobiomodulation affects key cellular pathways of all life-forms: considerations on old and new laser light targets and the calcium issue[J]. Photochemistry and Photobiology, 2019, 95(1): 455-459.

[19] ROJAS J C, GONZALEZ-LIMA F. Low-level light therapy of the eye and brain[J]. Eye and Brain, 2011, 3: 49-67.

[20] COLOMBO E, SIGNORE A, AICARDI S, et al. Experimental and clinical applications of red and near-infrared photobiomodulation on endothelial dysfunction: a review[J]. Biomedicines, 2021, 9(3): 274.

[21] SANATI M H, TORKAMAN G, HEDAYATI M, et al. Effect of Ga-As (904?nm) and He-Ne (632.8 nm) laser on injury potential of skin full-thickness wound[J]. Journal of Photochemistry and Photobiology, 2011, 103(2): 180-185.

[22] FAHIMIPOUR F, HOUSHMAND B, ALEMI P, et al. The effect of He-Ne and Ga-Al-As lasers on the healing of oral mucosa in diabetic mice[J]. Journal of Photochemistry and Photobiology, 2016, 159: 149-154.

[23] SAHU K, MOHANTY S K, GUPTA P K. He-Ne laser (632.8 nm) pre-irradiation gives protection against DNA damage induced by a near-infrared trapping beam[J]. Journal of Biophotonics, 2009, 2(3): 140-144.

[24] ARUNKAJOHNSAK S, THANOMKITTI K, KASEMSARN P, et al. Successful treatment of acupuncture-induced argyria using Q-switched 1?064-nm Nd:YAG laser[J]. JAAD Case Reports, 2020, 6(10): 984-987.

[25] SHANG J, GONG K, XU D P, et al. The Nd:YAG laser or combined with Er:YAG laser therapy for oral venous lakes[J]. Photobiomodulation, Photomedicine, and Laser Surgery, 2020, 38(4): 244-248.

[26] ABLON G. Phototherapy with light emitting diodes: treating a broad range of medical and aesthetic conditions in dermatology[J]. The Journal of Clinical and Aesthetic Dermatology, 2018, 11(2): 21-27.

[27] HEISKANEN V, HAMBLIN M R. Photobiomodulation: lasers vs. light emitting diodes?[J]. Photochemical & Photobiological Sciences, 2018, 17(8): 1003-1017.

[28] ROBERTSON G, FLEMING A, WILLIAMS M C, et al. Association between hypertension and retinal vascular features in ultra-widefield fundus imaging[J]. Open Heart, 2020, 7(1): e001124.

[29] CHATTERJEE S, CHATTOPADHYAY S, HOPE-ROSS M, et al. Hypertension and the eye: changing perspectives[J]. Journal of Human Hypertension, 2002, 16(10): 667-675.

[30] MANCHINI M T, ANTONIO E L, SILVA JUNIOR J A, et al. Low-level laser application in the early myocardial infarction stage has no beneficial role in heart failure[J]. Frontiers in Physiology, 2017, 8: 23.

[31] CARLOS F P, GRADINETTI V, MANCHINI M, et al. Role of low-level laser therapy on the cardiac remodeling after myocardial infarction: a systematic review of experimental studies[J]. Life Sciences, 2016, 151: 109-114.

[32] UCERO A C, SABBAN B, BENITO-MARTIN A, et al. Laser therapy in metabolic syndrome-related kidney injury[J]. Photochemistry and Photobiology, 2013, 89(4): 953-960.

[33] SANCHEZ-LOZADA L G, RODRIGUEZ-ITURBE B, KELLEY E E, et al. Uric acid and hypertension: an update with recommendations[J]. American Journal of Hypertension, 2020, 33(7): 583-594.

[34] KOVALENKO Y L, RUDENKO L A, MELEKHOVETS O K, et al. Efficiency of hyperuricemia correction by low level laser therapy in the treatment of arterial hypertension[J]. Wiadomosci Lekarskie (Warsaw, Poland: 1960), 2018, 71(7): 1310-1315.

[35] OISHI J C, DE MORAES T F, BUZINARI T C, et al. Hypotensive acute effect of photobiomodulation therapy on hypertensive rats[J]. Life Sciences, 2017, 178: 56-60.

[36] DE MORAES T F, FILHO J C C, OISHI J C, et al. Energy-dependent effect trial of photobiomodulation on blood pressure in hypertensive rats[J]. Lasers in Medical Science, 2020, 35(5): 1041-1046.

[37] BUZINARI T C, DE MORAES T F, CARNIO E C, et al. Photobiomodulation induces hypotensive effect in spontaneously hypertensive rats[J]. Lasers in Medical Science, 2020, 35(3): 567-572.

[38] DE FREITAS L F, HAMBLIN M R. Proposed mechanisms of photobiomodulation or low-level light therapy[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(3): 7000417.

[39] POPE N J, POWELL S M, WIGLE J C, et al. Wavelength- and irradiance-dependent changes in intracellular nitric oxide level[J]. Journal of Biomedical Optics, 2020, 25(8): 1-20.

[40] QUIRK B J, WHELAN H T. What lies at the heart of photobiomodulation: light, cytochrome C oxidase, and nitric oxide-review of the evidence[J]. Photobiomodulation, Photomedicine, and Laser Surgery, 2020, 38(9): 527-530.

[41] KUBASZEWSKI E, PETERS A, MCCLAIN S, et al. Light-activated release of nitric oxide from vascular smooth muscle of normotensive and hypertensive rats[J]. Biochemical and Biophysical Research Communications, 1994, 200(1): 213-218.

[42] KARU T I, PYATIBRAT L V, AFANASYEVA N I. Cellular effects of low power laser therapy can be mediated by nitric oxide[J]. Lasers in Surgery And Medicine, 2005, 36(4): 307-314.

[43] YOSHIMURA T M, SABINO C P, RIBEIRO M S. Photobiomodulation reduces abdominal adipose tissue inflammatory infiltrate of diet-induced obese and hyperglycemic mice[J]. Journal of Biophotonics, 2016, 9(1112): 1255-1262.

[44] BISWAS R, AHN J C, MOON J H, et al. Low-level laser therapy with 850 nm recovers salivary function via membrane redistribution of aquaporin 5 by reducing intracellular Ca(2+) overload and ER stress during hyperglycemia[J]. Biochimica et Biophysica Acta-Genenal Subjects, 2018, 1862(8): 1770-1780.

[45] GóRALCZYK K, SZYMA?SKA J, SZOT K, et al. Low-level laser irradiation effect on endothelial cells under conditions of hyperglycemia[J]. Lasers in Medical Science, 2016, 31(5): 825-831.

[46] GORALCZYK K, SZYMA?SKA J, GRYKO L, et al. Low-level laser irradiation modifies the effect of hyperglycemia on adhesion molecule levels[J]. Lasers in Medical Science, 2018, 33(7): 1521-1526.

[47] JERE S W, HOURELD N N, ABRAHAMSE H. Role of the PI3K/AKT (mTOR and GSK3β) signalling pathway and photobiomodulation in diabetic wound healing[J]. Cytokine Growth Factor Reviews, 2019, 50: 52-59.

[48] TATMATSU-ROCHA J C, FERRARESI C, HAMBLIN M R, et al. Low-level laser therapy (904 nm) can increase collagen and reduce oxidative and nitrosative stress in diabetic wounded mouse skin[J]. Journal Photochemistry and Photobiology, 2016, 164: 96-102.

[49] DALIRSANI Z, GHAZI N, DELAVARIAN Z, et al. Effects of diode low-level laser therapy on healing of tooth extraction sockets: a histopathological study in diabetic rats[J]. Lasers in Medical Science, 2021, 36(7): 1527-1534.

[50] GUO S, GONG L, SHEN Q, et al. Photobiomodulation reduces hepatic lipogenesis and enhances insulin sensitivity through activation of CaMKKβ/AMPK signaling pathway[J]. Journal Photochemistry and Photobiology, 2020, 213: 112075.

[51] KARR S. Epidemiology and management of hyperlipidemia[J]. The American Journal of Managed Care, 2017, 23(9 Suppl): S139-S148.

[52] WANG H, LIU W, FANG X, et al. Effect of 405?nm low intensity irradiation on the absorption spectrum of in vitro hyperlipidemia blood[J]. Technology and Health Care, 2018, 26(S1): 135-143.

韩雅茹, 马啸, 刘智明, 郭周义, 钟会清. 低强度激光治疗技术在“三高”中的应用和研究进展[J]. 激光生物学报, 2021, 30(6): 489. HAN Yaru, MA Xiao, LIU Zhiming, GUO Zhouyi, ZHONG Huiqing. Application and Research Progress of Low Level Laser Therapy Technology in “Three Highs”[J]. Acta Laser Biology Sinica, 2021, 30(6): 489.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!