光谱学与光谱分析, 2023, 43 (9): 2916, 网络出版: 2024-01-12  

锆脱氧钢中非金属夹杂物的表征及对比分析

Characterization and Comparative Analysis of Non-Metallic Inclusions in Zirconium Deoxidized Steel
作者单位
1 贵州大学材料与冶金学院, 贵州 贵阳 550025
2 贵州大学材料与冶金学院, 贵州 贵阳 550025 首钢水城钢铁(集团)有限责任公司轧钢事业部, 贵州 六盘水 553000
3 贵州理工学院材料与能源工程学院, 贵州 贵阳 550003
摘要
全面、 准确表征钢中非金属夹杂物特征, 有利于发现和认识新夹杂物, 也是实现非金属夹杂物的调控和钢材质量提升的前提。 分别采用扫描电镜-能谱、 拉曼光谱、 高分辨率透射电镜和微区X射线衍射等检测方法, 结合夹杂物电解萃取技术和图像分析技术, 表征了锆脱氧钢中非金属夹杂物形貌、 尺寸、 数量、 分布、 成分、 晶体结构等特征参数, 对比分析了四种夹杂物表征方法的优缺点。 结果表明, 采用SEM-EDS方法分析锆脱氧钢中夹杂物主要由Zr、 O和少量Al元素组成。 基于锆氧化物和铝氧化物的化学计量关系, 分析得出夹杂物由94% ZrO2和6% Al2O3组成。 统计锆脱氧钢中夹杂物尺寸分布, 夹杂物的平均尺寸为0.62 μm, 0.7~0.8 μm范围内夹杂物数量最多。 采用SEM结合电解萃取夹杂物技术, 可以观察到钢中非金属夹杂物的三维形貌。 采用EDS方法可以逐一定性分析夹杂物中元素组成和元素分布情况, 结合夹杂物的化学计量关系, 可以定量分析具有单一价态夹杂物的成分。 但是, 对于价态种类较多和价态不明的非金属夹杂物, 仅采用EDS方法不能准确分析得出夹杂物的物相和成分。 采用拉曼光谱结合电解萃取夹杂物技术, 检测到锆脱氧钢中存在单斜相二氧化锆。 通过TEM衍射花样标定及能谱分析单个夹杂物, 检测到有单斜相的二氧化锆。 采用微区X射线衍射法结合电解萃取夹杂物技术, 检测到单斜相与四方相的二氧化锆, 并得到了二氧化锆夹杂物的晶格参数。 此三种方法均未检测到含铝物相。 拉曼光谱分析法、 透射电子显微镜、 微区X射线衍射法均能够定性分析电解萃取后夹杂物物相和成分, 但是对于含量较低物相, 三种方法无法准确表征。 透射电子显微镜、 微区X射线衍射法均能够表征夹杂物晶体结构、 晶格参数。 透射电子显微镜和扫描电镜只能逐一表征各个夹杂物。 微区X射线衍射法和拉曼光谱分析法能够表征检测区域内所有夹杂物物相, 是具有统计意义的夹杂物表征方法。 因此, 采用扫描电镜-能谱分析结合微区X射线衍射分析可以较为全面、 准确表征夹杂物特征。
Abstract
The comprehensive and accurate characterization of the characteristics of non-metallic inclusions in steel is conducive to the discovery and recognition of new inclusions and is also the prerequisite for the regulation of non-metallic inclusions and the improvement of steel quality. This paper uses scanning electron microscopy with energy spectrum (SEM-EDS), Raman spectrum, high-resolution transmission electron microscope(TEM) and micro-region X-ray diffraction (μXRD), combined with the inclusion of electrolytic extraction technology and image analysis technology, the characterization of zirconium deoxidization non-metallic inclusions in steel shape, size, quantity, distribution, composition, crystal structure, characteristic parameters such as comparative analysis the advantages and disadvantages of four kinds of methods for characterizing the inclusions. The results show that the inclusion in zirconium deoxidized steel was mainly composed of Zr, O and a small amount of Al by SEM-EDS method. Based on the stoichiometric relationship between zirconium oxide and aluminum oxide, the inclusion was analyzed to be composed of 94% ZrO2 and 6% Al2O3. The inclusion size distribution in zirconium deoxidized steel is normal. The average inclusion size is 0.62 μm, and the number of inclusions is the largest in the range of 0.7~0.8 μm. The three-dimensional morphology of non-metallic inclusions in steel can be observed using SEM combined with electrolysis. The EDS method can be used to qualitatively analyze the composition and distribution of elements in inclusions individually. The composition of inclusions with single valence can be quantitatively analyzed. However, for non-metallic inclusions with many valence states and unknown valence states, the EDS method alone cannot accurately analyze the phase and composition of inclusions. The presence of monoclinic zirconia in zirconium-deoxidized steel was detected by Raman spectroscopy combined with electrolysis extraction of inclusions. TEM diffraction pattern calibration and energy spectrum analysis of a single inclusion detected Zirconia with monoclinic phase. Two phases, including monoclinic and tetragonal zirconia, were detected by μXRD combined with electrolytic extraction of inclusions, and the lattice parameters of zirconia inclusions were obtained. These three methods detected no aluminum-containing phase. Raman spectroscopy, TEM and μXRD can be used to qualitatively analyze the phase and composition of inclusions after electrolytic extraction, but the three methods cannot accurately characterize the phase with low content. TEM and μXRD can characterize the crystal structure and lattice parameters of the inclusion. TEM and SEM can only characterize individual inclusions one by one. μXRD and Raman spectroscopy can characterize the phase of all the inclusions in the detected region, a statistically significant method to characterize inclusions. Therefore, the inclusion characteristics can be characterized comprehensively and accurately by SEM-EDS analysis combined with μXRD analysis.
参考文献

[1] Fernandes Marcolino, Cheung Noé, Garcia Amauri. Materials Characterization, 2002, 48(4): 255.

[2] MA Chao, LUO Hai-wen(马 超, 罗海文). Metallurgical Analysis(冶金分析), 2017, 37(8): 1.

[3] Li Yutang, Wang Linzhu, Li Junqi, et al. ISIJ International, 2021, 61(3): 753.

[4] Li Yutang, Wang Linzhu, Li Junqi, et al. Metallurgical Research & Technology, 2021, 118(3): 310.

[5] Wang Linzhu, Yang Shufeng, Li Junqi, et al. Steel Research International, 2021, 92(7): 2100013.

[6] Li Yutang, Wang Linzhu, Chen Chaoyi, et al. Materials, 2020, 13(15): 3355.

[7] Liu Yang, Zhang Xiao, Wang Pei, et al. Metallurgical and Materials Transactions B, 2020, 51: 22.

[8] SHANG De-li, WANG Guo-cheng, L Chun-feng, et al(尚德礼, 王国承, 吕春风, 等). Metallurgical Collections(冶金从刊), 2007, 12(6): 69.

[9] LI Hui-gai, QIU Lei, WU Chun-feng, et al(李慧改, 邱 磊, 吴春峰, 等). Shanghai Metals(上海金属), 2010, 32(6): 39.

[10] ZHANG Yi, MIAO Le-de, WANG Guo-dong, et al(张 毅, 缪乐德, 王国栋, 等). Baogang Technology(宝钢技术), 2011, (3): 6.

[11] ZHANG Yi-min, SUN Yan-hui, BAI Xue-feng, et al(张一民, 孙彦辉, 白雪峰, 等). Chinese Journal of Engineering(工程科学学报), 2020, 42(S1): 14.

[12] L Yong, REN Hong-zhi, XING Jin-xin, et al(吕 勇, 任宏志, 邢金鑫, 等). Iron Steel Vanadium Titanium(钢铁钒钛), 2020, 41(1): 131.

[13] LI Ming, ZHANG Li-feng, LUO Yan, et al(李 明, 张立峰, 罗 艳, 等). China Metallurgy(中国冶金), 2018, 28(S1): 95.

[14] Xie Jianbo, Fan Tian, Zeng Zhiqi, et al. Journal of Materials Research and Technology, 2020, 9(4): 9142.

[15] Shen Ping, Yang Qiankun, Zhang Dong, et al. Journal of Iron and Steel Research International, 2018, 25(8): 9.

[16] Li Yutang, Wang Linzhu, Li Junqi, et al. Journal of Materials Research and Technology, 2022, 19(1): 578.

[17] Narita K, Makino T. Tetsu-to-Hagane, 1971, 57(6): 1006.

[18] Bernier N, Xhoffer C, Tom V, et al. Materials Characterization, 2013, 86(1): 116.

[19] WANG Yi, LI Chang-rong, ZHUANG Chang-ling(王 奕, 李长荣, 庄昌凌). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2021, 41(8): 2480.

[20] Guo A M, Li S R, Guo J, et al. Materials Characterization, 2008, 59: 134.

[21] Jiang M, Hu Z Y, Wang X H, et al. ISIJ International, 2013, 53(8): 1386.

[22] GUO Qin-yi, SONG Bo, SONG Ming-ming(郭沁怡, 宋 波, 宋明明). Transactions of Materials and Heat Treatment(材料热处理学报), 2019, 40(2): 133.

[23] Bindi L, Churakov V S, Downs R, et al. Highlights in Mineralogical Crystallography. Berlin: De Gruyter, 2015.

黎玉唐, 王林珠, 李翔, 王珺. 锆脱氧钢中非金属夹杂物的表征及对比分析[J]. 光谱学与光谱分析, 2023, 43(9): 2916. LI Yu-tang, WANG Lin-zhu, LI Xiang, WANG Jun. Characterization and Comparative Analysis of Non-Metallic Inclusions in Zirconium Deoxidized Steel[J]. Spectroscopy and Spectral Analysis, 2023, 43(9): 2916.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!