光电工程, 2022, 49 (1): 210320, 网络出版: 2022-04-06   

基于激光诱导表面周期结构的微纳防伪结构色

Laser-induced periodic surface structure for microscale anti-counterfeiting structural colors
作者单位
1 暨南大学光子技术研究院,广东省光纤传感与通信技术重点实验室,广东 广州 510632
2 广东工业大学先进光子技术研究院,广东 广州 510006
摘要
激光诱导表面周期结构由于其周期相关的光栅衍射特性在明场下显示出鲜艳的结构色,备受研究人员的广泛关注,而微纳结构在显微镜暗场显示的颜色通常容易被忽略。本文报道通过飞秒激光对氧化铟锡薄膜加工形成双周期光栅结构,利用其在明场和暗场的观察下具有不同的颜色特性实现图像加密应用。通过控制飞秒激光的偏振、脉冲能量和扫描速度在氧化铟锡薄膜上形成与偏振和波长相关的亚波长周期光栅,通过控制激光加工线条行间距形成大周期光栅。本文研究了激光加工能量和加工线条之间的间距对其形成双周期结构在明场和暗场显色的影响,利用不同加工参数结构在明场和暗场下显示不同的颜色实现图像加密。激光直写加工可以快速制备大面积区域,有望在商品防伪、图案装饰、超表面设计等方面发挥潜在的应用价值。

Abstract
The vivid color appearance of laser-induced periodic surface structures (LIPSS) has received intense research interests. The vibrant structural color associated with the periodicity of LIPSS is normally concerned under bright -field illumination, while the colors of structures under dark-field illumination are commonly overlooked. In this paper, we report an image encryption method based on laser-induced dual-period grating structures in indium tin oxide thin films, exhibiting different colors under bright-field and dark-field illumination. Following the standard laser recipe by judiciously controlling the polarization, pulse energy and scanning speed, subwavelength period LIPSS can be fabricated. By controlling the space between the fabricated lines, another grating with a larger periodicity can be formed. Consequently, the dual-period grating structure displays different colors under bright-field and dark-field illumination depending on the laser recipe with different pulse energies and line spaces. Leveraging this effect, information can be encoded in the color image, which displays the same color appearance under bright -field illumination while revealing different colors under dark-field illumination has been demonstrated. Combing the flexibility and scalability of laser fabrication, we envisage the potential applications in anti-counterfeiting, pattern decoration, metasurface, etc.

1 引 言

激光加工在数据存储[1-3]、周期微纳结构制备[4-5]等方面具有重要的应用。其中激光诱导周期性表面结构(laser induced periodic surface structures, LIPSS)是一种普遍现象[6-8],在超快激光的照射下,几乎大部分金属、半导体、绝缘体材料都能形成周期性结构[9-13]。LIPSS的结构有高空间频率周期条纹、低空间频率周期条纹、凹槽等形状[14],LIPSS的形成会受激光波长、偏振方向、能量、脉冲数、脉宽等参数影响[15-18]。通常认为LIPSS的形成是入射光波与物体粗糙表面的散射光波干涉导致,但随着在材料上制备出了突破衍射极限的高空间频率光栅,使用该模型就很难解释清楚这种现象。到目前为止,为了解释这种突破衍射极限的高空间频率周期条纹,相继提出了表面等离子体模型、自组织模型、库伦爆炸模型等[19-23]。然而对于高空间频率周期条纹的解释依然存在较多争议,这些模型并没有普适性,依然需要进一步研究。

LIPSS在表面增强的拉曼散射、抗菌表面、仿生表面及结构色等[7-8, 24-28]方面具有重要的应用。结构色的产生主要依赖于LIPSS的形成,如Dusser等人[25]在不锈钢表面加工得到小于激光波长的波纹,可以使材料显示颜色。此外LIPSS也可以在铝、铂、钛等材料上实现结构色,结构色的空间尺度既可以是微纳量级,也可以是肉眼可见的毫米量级。结构色在标记、装饰、加密和防伪等方面具有重要的作用,如Hu等人[29]利用激光加工形成的结构在不同观察角度下显示不同颜色这一原理,实现信息的防伪。由于结构周期性带来的光栅效应,其在明场颜色鲜艳受到广泛关注,而暗场颜色容易被忽略。

本文报道了一种飞秒激光制备的双周期结构,其在明场和暗场显示不同颜色实现信息加密技术。如图1所示,图1(a)为加工过程的示意图,飞秒激光(脉宽40 fs,波长800 nm,重复频率1 kHz)以线扫描方式对制备在玻璃衬底上氧化铟锡(Indium tin oxide,ITO)薄膜加工,扫描次数为加工结构宽度除以间距D。研究了激光加工中脉冲能量、加工线条之间的间距(D)及扫描速度等参数对加工之后微光栅的形成和结构色的影响。图1(b)为加工产生结构色示意图,当扫描速度和间距D固定时,使用不同的激光能量加工形成的结构在反射式显微镜的观察下,其明场暗场显示的颜色不一样,明场颜色主要为蓝色、红色以及两者的合成色,暗场颜色基本可以覆盖整个色域范围,该结果在表面装饰、数据存储等方面具有潜在应用价值。图1(c)为防伪加密技术的示意图,当扫描速度以及激光加工能量不变时,改变扫描线条的间距D可以使加工结构在明场显色相同,但暗场显示的颜色不一样,只有在明场颜色和暗场颜色同时满足要求时,才能得到正确的信息,从而实现信息的防伪。

图 1. 激光加工双周期LIPSS过程与图像加密应用示意图。 (a) 飞秒激光线扫描在ITO薄膜加工的示意图,红色箭头代表激光扫描的移动方向。D为扫描线条之间的距离;(b) 结构加工之后产生结构色的示意图,其明场与暗场会显示不同的颜色,并且具有丰富的颜色;(c) 微纳防伪结构色示意图,其结构明场显示的颜色一样,但暗场显示的颜色不一样

Fig. 1. Schematic diagrams of dual-period LIPSS and its application. (a) Sketch of femtosecond laser line scanning in ITO thin films. The red arrows represent the moving direction of the laser beam. D is the distance between two fabricated lines; (b) Sketch of structural colors. The structures will show different colors under bright-field and dark-field illumination; (c) Sketch of anti-counterfeiting based on structure colors from dual-period LIPSS. The LIPSS structures display the same color under bright-field illumination and different colors under dark-field illumination

下载图片 查看所有图片

2 实 验

实验中我们采用自建飞秒激光加工系统,如图1(a)所示,其中超快飞秒激光器(脉宽40 fs,波长800 nm,垂直偏振)光斑直径为5 mm,衰减片用于调节激光能量,光开关控制激光传输时的逻辑状态,扫线加工时,光开关处于打开状态,激光照射到样品上。激光通过低数值孔径0.25的物镜(N PLAN EPI,10×, Leica Co. )聚焦到样品上,样品固定在电控三维位移台上,通过控制位移台的移动加工不同形状的图案。样品的制备使用磁控溅射将ITO镀在玻璃衬底上,ITO薄膜厚度为180 nm 左右。

样品形成的颜色使用暗场散射显微镜(Olympus,BX53,Olympus Co.)通过彩色相机获取样品的图案。照明光源为卤素白光源,光源通过物镜(MPlanFL N,5×/ 0.15 BD,Olympus Co. )聚焦到样品,之后再通过相同的物镜收集样品反射的信号到彩色相机。本文彩色相机拍摄的图案都为数值孔径是0.15的物镜拍摄。光谱采集使用高数值孔径0.8的物镜(MPlanFL N,50×,Olympus Co. ),散射光谱在暗场显微镜模式下直接通过光谱仪(SR-500i-D2-R-1F1, Andor Co. )采集。采集反射光谱时先采集光源在全反射银镜的反射光谱,之后采集加工区域的反射谱除以银镜的反射光谱得到归一化的反射率。

3 结果分析

实验中主要研究激光加工能量以及扫描线条之间的间距对样品加工形成结构的影响,不同加工参数对结构显示颜色的变化趋势,并利用扫描电子显微镜(scanning electron microscope,SEM)观察结构。图2是激光扫描速度为0.5 mm/s时激光加工能量和扫描线条间距D对结构显示颜色的影响及结构的变化趋势。当速度为0.5 mm/s时,图2(a)2(b)为彩色相机拍摄的明场和暗场图片,加工的矩形区域为100 μm × 40 μm。当D为1 μm,加工能量为1 mW到1.2 mW时,明场颜色呈现蓝色到红色的变化趋势,暗场颜色为红色到蓝色的变化趋势,但此时暗场的颜色偏暗。从扫描电子显微镜的结果可以看出,此时加工得到的结构以条纹为主,该波纹垂直激光的偏振,随着加工能量的增加,出现波纹数量减少、波纹呈现明显到不明显的变化趋势。加工能量为1.3 mW时,此时明场的颜色为浅灰色,暗场为黑色,说明此时已经将样品从表面剥离掉。从SEM图可以发现,当D为1.5 μm时,波纹的变化趋势与D为1 μm时类似。但D为2 μm和2.5 μm时,此时明场的颜色主要以暗蓝色为主,但暗场的颜色分别以橙色和暗红色为主。其原因主要为D为1 μm和1.5 μm时,激光的光斑大于线条之间的距离,加工时部分区域会重叠。当激光加工能量为1.2 mW时,随着D增大,明场颜色为红色到蓝色的变化趋势,暗场颜色为蓝色到暗红色的变化。当激光加工能量为1.1 mW时,随着D增大,此时明场的颜色以蓝色为主,但暗场的颜色变化趋势为紫色到红色。

图 2. 激光扫描速度与扫描线条间距对加工结构的影响。 激光扫描速度为0.5 mm/s时,激光扫描线间距D与激光加工能量对应的明场显微镜图(a)和暗场显微镜图(b)的彩色相机拍摄结果,矩形的大小为40 μm × 100 μm;(c) 加工形成结构的SEM形貌图

Fig. 2. The effect of laser energy and the distance between fabricated lines. When the laser scanning speed is 0.5 mm/s, the images of bright-field (a) and dark-field (b) corresponding to different laser scanning line spaces D and processing energy. The size of the rectangle is 40 μm × 100 μm; (c) The SEM image of processed structures

下载图片 查看所有图片

通过以上研究发现,扫描间距D和激光能量对结构显示的颜色具有重要的影响。为了得到丰富的明场与暗场颜色,这时可以将D固定为1.5 μm以改变激光的加工能量为主。对于防伪方面的应用,可以将激光的加工能量固定,改变D使结构明场颜色一样,暗场颜色不一样进而达到防伪的效果。

为了进一步研究结构色的形成机制,使用傅里叶变换和有限时域差分法对结构进行分析。图3(a)的SEM形貌图是D为1.5 μm,加工能量为1.1 mW的结果,图3(b)为对应的傅里叶变换结果,从图中可以看出加工得到的结构具有较好的周期性,该周期主要体现于扫描线条间距D。由于加工形成的结构呈无序的分布,因此本文建立了简化的物理模型研究结构与光波的作用机制。如图3(c)所示,根据SEM结果设置长方体的长宽高为800 nm × 120 nm × 40 nm。XY平面使用周期边界条件,如图中的橙色矩形区域所示,每个周期单元大小为860 nm × 1500 nm,单个周期单元由三个长方体组成,长方体中心之间的距离为150 nm。利用有限时域差分法计算,通过设置光源正入射,在光源后方设置探测器,仿真明场结构的反射谱;通过设置斜入射光源,类比得到结构在暗场条件下反射的光谱[30]。本文明场计算使用平面波作为光源,水平偏振光正入射,偏振方向与结构中的长方体长轴平行,暗场计算时将光源入射角设置为70°(数值孔径为0.4)。图3(d)为归一化的反射光谱,蓝色和红色分别代表明场和暗场计算的结果,从反射曲线可以看出在明场和暗场下具有不同的共振峰,证明了结构在明场和暗场显示不同的颜色,需要指出的是由于实际结构的高度、形貌等具有强的无序性,而仿真使用了简化的模型,导致仿真计算的光谱与实际测量的光谱存在差异,该模拟证明双周期光栅结构在明场和暗场下会显示不同的颜色。图3(e)3(f)分别为暗场和明场计算结构在YZ面在共振峰处的电场强度分布图,对应的波长分别为560 nm和650 nm。结构之间的间距和高度将会影响其在明场和暗场显示的颜色,当结构在明场和暗场条件照射时,形成不同的电场分布模式[30-31]。我们的计算结果可以看出,电场强度的分布在暗场显示的颜色主要为亚波长光栅结构之间的相互耦合作用,电场最强处主要集中在亚波长光栅之间,而明场下电场最强处分布在大周期光栅上方。

图 3. 结构色形成机制分析。 (a) D为1.5 μm时加工得到结构的SEM形貌图; (b)为(a)傅里叶变换的结果;(c) 加工结构简化的物理模型示意图;(d) 计算的明场和暗场反射曲线;(e) ,(f) 分别为暗场和明场计算的电场强度分布图

Fig. 3. Analysis of structural color formation. (a) The SEM image of the structures when D is 1.5 μm; (b) The result of the Fourier transformation of (a); (c) Schematic diagram of the simplified physical model of the LIPSS structures; (d) Simulated bright-field and dark-field reflection spectra; (e), (f) are the simulated electric field intensity distributions under dark-field and bright-field illumination, respectively

下载图片 查看所有图片

根据以上结果,为了获得更多明场与暗场颜色,实验中使用了更小的加工能量间隔并且测量了结构在明场和暗场下的反射光谱。图4为激光加工速度为0.5 mm/s、间距D为1.5 μm时,改变激光加工能量的实验结果。图4(a)4(b)分别为5倍物镜观察的暗场与明场图片,4(b)中①~⑥对应的激光加工能量为0.95 mW~1.25 mW,间隔为0.06 mW。从结果可以看出,明场暗场具有丰富的色彩。4(c)图4(a)4(b)中的颜色在色度图上的对应关系,色度图为CIE1976,“+” 和“о”分别代表明场和暗场观察下对应的颜色。4(d)采集每个颜色的局部区域的光谱信息,图像中的标号与图4(b)中的标号对应,红色曲线代表样品的归一化散射光谱,蓝色曲线代表样品的反射光谱,采集的波长范围为420 nm~700 nm,可以覆盖整个可见光范围。从光谱信息中可以看出,随着激光加工能量的增大,散射光谱的共振峰会往短波移动,可以很好地与其显示的颜色相对应。对于反射光谱,在短波处始终存在共振峰,随着激光加工能量的增加,短波处的共振峰会逐渐减弱,而长波670 nm处的共振会逐渐增强,其结果与明场对应的颜色能够很好的吻合。

图 4. 结构色的表征。 激光的扫描速度为0.5 mm/s,线条之间间距为1.5 μm,使用不同的激光能量加工雪花图案得到的暗场(a)和明场(b)显微图片,(b)中编号①~⑥对应的激光加工能量为0.95 mW ~ 1.25 mW,能量间隔为0.06 mW;(c) 明场暗场颜色在色度图CIE 1976上的对应关系,“+”为明场对应的颜色,“о”为暗场对应的颜色;(d) 中红色曲线和蓝色曲线分别代表实验测量的散色光谱和反射光谱,①~⑥与明场中的编号对应。

Fig. 4. Characterization of structural colors. The scanning speed of the laser beam is 0.5 mm/s, the space between lines is 1.5 μm. The dark-field (a) and bright-field (b) micrographs are obtained by processing the snowflake pattern with different laser energy, and the numbers ①~⑥ in (b) correspond to the laser processing energy: 0.95 mW~1.25 mW, the energy interval is 0.06 mW; (c) The correspondence of bright-field and dark-field colors on the chromaticity diagram CIE 1976, "+" is the color corresponding to bright-field, and "о" is the color corresponding to dark-field; (d) The red and blue curves represent the experimentally measured scattered and reflected spectra, respectively, and ①~⑥ correspond to the numbers in the bright-field image

下载图片 查看所有图片

通过对激光加工能量的优化可使结构在明场和暗场下显示丰富的颜色,此外还可以对激光加工能量和扫描间距控制使结构在明场显示相同的颜色而在暗场显示不同的颜色进而实现微纳防伪结构色的应用。如图5所示,根据图2的实验结果,图5 (a)~(c)5(d)5(e)的激光加工能量分别选择1.2 mW和1.1 mW,加工速度为0.5 mm/s,云朵和雨滴图案加工使用的D分别为2 μm和1.5 μm。图5 (a)5(d)5(b)5 (e)分别为明场和暗场的图像,图5 (c)5(f)为SEM的结果,左边和右边分别对应云朵和雨滴结构里面的部分区域。从结果可以看出,当加工能量和速度一致时,改变D可以使明场显示的颜色一样,暗场显示的颜色不一样,利用这一特点,可以对二维码和信息进行加密。如图5(g)5(h)所示,对二维码黑白两个区域分别使用2 μm和1.5 μm的扫描间距加工,其在明场下显示的颜色基本一致,其区分度很低,这时候基本识别不了二维码的信息,但在暗场观察时,二维码的两个区域会呈现橙色和淡绿色,此时的图像具有很高的区分度,这时候可以很好识别二维码的信息。图5 (i)的实验为信息加密的示例,当传递一组信号“20769”时,可以在其中间添加一组干扰信息将其变为“2037659”,此时明场观察下得到错误的信息,只有当数字暗场颜色为橙色时,才可以得到正确的信息。这样可以利用结构在暗场下展示不同的颜色,引入暗场颜色作为信息加密的维度,对信息实现加密以及防伪。

图 5. 微纳防伪结构色的实验结果。 (a)~(f) 中,激光扫描速度为0.5 mm/s ,“云朵”的扫描线条间距D为2 μm,“雨滴”的扫描线条间距D为1.5 μm。(a)~(c)、(d)~(f)的加工能量分别为1.0 mW和1.2 mW,(a, d),(b, e),(c, f)分别为明场、暗场和SEM形貌结果,SEM的左图和右图分别为云朵和雨滴里面的部分结构;(g), (h) 对二维码隐藏的实验结果;(i) 引入干扰信息的实验结果

Fig. 5. Experimental results of microscale anti-counterfeiting structural colors. In (a)~(f), the laser scanning speed is 0.5 mm/s, the scanning line space D of the pattern “clouds” is 2 μm, and the scanning line space D of raindrops is 1.5 μm. The processing energy of (a)~(c), (d)~(f) are 1.0 mW and 1.2 mW, respectively. In the figure, (a, d), (b, e), (c, f) are bright-field, dark-field and SEM image results, respectively, and the left and right images of the SEM show part of the structure inside the pattern “clouds” and “raindrops”, respectively; (g) and (h) are the experimental results of QR code hiding; (i) is the experimental result after introducing disturbance information

下载图片 查看所有图片

4 总 结

在本文中,研究了飞秒激光对氧化铟锡薄膜加工形成双周期表面光栅结构,通过控制飞秒激光的偏振、脉冲能量和扫描速度,研究对明场和暗场结构色的关系。实验结果得到了广色域的明场暗场显微图像,并且明场和暗场显示颜色与激光加工能量和加工线条间距相关。利用不同加工参数结构在明场和暗场下显示不同的颜色,实现了图像加密应用。引入暗场颜色作为数据加密的一个通道,明场观察时可以将密钥信息隐藏,只有在暗场观察下才可以得到正确信息,还可以对信息添加干扰信号,需要明场信号与暗场信号对应时才可以提取有效的信息。该研究有望在商标装饰、商品防伪水印、数据加密等方面发挥潜在的应用价值。

Overview: The vivid color appearance of laser-induced periodic surface structures (LIPSS) has received intense research interests. The vibrant structural color associated with the periodicity of LIPSS is normally concerned under bright-field illumination, while the colors of the structures under dark-field illumination are commonly overlooked. In this paper, we report an image encryption method based on laser-induced dual-period grating structures in indium tin oxide (thickness 180 nm) thin films, exhibiting different colors under bright-field and dark-field illumination. Following the standard laser recipe by judiciously controlling the polarization, pulse energy and scanning speed, subwavelength period LIPSS can be fabricated. By controlling the space between the fabricated lines, another grating with a larger periodicity can be formed. Leveraging this effect, we studied the effect of laser processing energy and the distance (D) between fabricated lines on the color appearance of the structures under bright-field and dark-field illumination. The experimental results indicate that the structures formed by different laser processing energies have rich colors under the bright-field and dark-field when the scanning speed is 0.5 mm/s and the distance D between scanning lines is 1.5 μm. When the laser energy and laser scanning speed are constant, using different distances D between laser fabricated lines can make the structures display the same color under bright-field illumination while different colors under dark-field illumination. This feature can be used for image hiding such as the QR code. The colors displayed under bright-field illumination is the same, and the QR code cannot be recognized. In contrast, the QR code shows distinct colors under dark-field illumination. Furthermore, it is possible to introduce disturbance information under bright-field illumination image to realize data encryption. Only concealed information can be clearly distinguished under dark-field illumination. Combing the flexibility and scalability of laser fabrication, we envisage the potential applications in anti-counterfeiting, pattern decoration, metasurface, etc.

参考文献

[1] 欧阳旭, 徐毅, 冼铭聪, 等基于无序金纳米棒编码的多维光信息存储光电工程201946318058410.12086/oee.2019.180584

    Ouyang X, Xu Y, Xian M C, et alEncoding disorder gold nanorods for multi-dimensional optical data storageOpto-Electron Eng201946318058410.12086/oee.2019.180584Ouyang X, Xu Y, Xian M C, et al. Encoding disorder gold nanorods for multi-dimensional optical data storage[J]. Opto-Electron Eng, 2019, 46(3): 180584.

[2] Ouyang X, Xu Y, Feng Z W, et alPolychromatic and polarized multilevel optical data storageNanoscale20191152447245210.1039/C8NR09192G

[3] Ouyang X, Xu Y, Xian M C, et alSynthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexingNat Photonics2021151290190710.1038/s41566-021-00880-1

[4] Li X J, Bai Z C, Peng M, et alSurface plasma enhanced fluorescence of CdSe quantum dots induced by laser on a grating surfaceOpto-Electron Eng201946518046410.12086/oee.2019.180464Li X J, Bai Z C, Peng M, et al. Surface plasma enhanced fluorescence of CdSe quantum dots induced by laser on a grating surface[J]. Opto-Electron Eng, 2019, 46(5): 180464.

    黎显继, 白忠臣, 彭嫚, 等激光诱导光栅表面等离子体增强CdSe量子点荧光光电工程201946518046410.12086/oee.2019.180464

[5] 杨焕, 曹宇, 李峰平, 等激光制备超疏水表面研究进展光电工程201744121160116810.3969/j.issn.1003-501X.2017.12.003

    Yang H, Cao Y, Li F P, et alResearch progress in superhydrophobic surfaces fabricated by laserOpto-Electron Eng201744121160116810.3969/j.issn.1003-501X.2017.12.003Yang H, Cao Y, Li F P, et al. Research progress in superhydrophobic surfaces fabricated by laser[J]. Opto-Electron Eng, 2017, 44(12): 1160−1168.

[6] Van Driel H M, Sipe J E, Young J FLaser-induced periodic surface structure on solids: a universal phenomenonPhys Rev Lett198249261955195810.1103/PhysRevLett.49.1955

[7] Bonse J, Gräf SMaxwell meets Marangoni—a review of theories on laser-induced periodic surface structuresLaser Photonics Rev20201410200021510.1002/lpor.202000215

[8] Bonse J, Höhm S, Kirner S V, et alLaser-induced periodic surface structures—A scientific evergreenIEEE J Sel Top Quantum Electron2017233900061510.1109/JSTQE.2016.2614183

[9] Birnbaum MSemiconductor surface damage produced by ruby lasersJ Appl Phys196536113688368910.1063/1.1703071

[10] Vorobyev A Y, Makin V S, Guo C LPeriodic ordering of random surface nanostructures induced by femtosecond laser pulses on metalsJ Appl Phys2007101303490310.1063/1.2432288

[11] Tsukamoto M, Asuka K, Nakano K, et al.Periodic microstructures produced by femtosecond laser irradiation on titanium plateVacuum20068011‒121346135010.1016/j.vacuum.2006.01.016

[12] Ashkenasi D, Rosenfeld A, Varel H, et alLaser processing of sapphire with picosecond and sub-picosecond pulsesAppl Surf Sci19971201‒2658010.1016/S0169-4332(97)00218-3

[13] Rohloff M, Das S K, Höhm S, et alFormation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse irradiation sequencesJ Appl Phys2011110101491010.1063/1.3605513

[14] Bonse J, Kirner S V, Griepentrog M, et alFemtosecond laser texturing of surfaces for tribological applicationsMaterials201811580110.3390/ma11050801

[15] Nivas J J J, He S T, Rubano A, et alDirect femtosecond laser surface structuring with optical vortex beams generated by a q-plateSci Rep201551792910.1038/srep17929

[16] Liang F, Vallée R, Chin S LPulse fluence dependent nanograting inscription on the surface of fused silicaAppl Phys Lett20121002525110510.1063/1.4729620

[17] Forster M, Kautek W, Faure N, et alPeriodic nanoscale structures on polyimide surfaces generated by temporally tailored femtosecond laser pulsesPhys Chem Chem Phys20111394155415810.1039/c0cp01798a

[18] Lin Z Y, Hong M HFemtosecond laser precision engineering: from micron, submicron, to nanoscaleUltraf Sci20212021978351410.34133/2021/9783514

[19] Reif J, Varlamova O, Uhlig S, et alOn the physics of self-organized nanostructure formation upon femtosecond laser ablationAppl Phys A2014117117918410.1007/s00339-014-8339-x

[20] Garrelie F, Colombier J P, Pigeon F, et alEvidence of surface Plasmon resonance in ultrafast laser-induced ripplesOpt Express201119109035904310.1364/OE.19.009035

[21] Le Harzic R, Dörr D, Sauer D, et alGeneration of high spatial frequency ripples on silicon under ultrashort laser pulses irradiationAppl Phys Lett2011982121190510.1063/1.3593493

[22] Dong Y Y, Molian P.Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laserAppl Phys Lett2004841101210.1063/1.1637948

[23] Bhardwaj V R, Simova E, Rajeev P P, et alOptically produced arrays of planar nanostructures inside fused silicaPhys Rev Lett200696505740410.1103/PhysRevLett.96.057404

[24] Zhao Y Z, Su Y L, Hou X Y, et alDirectional sliding of water: biomimetic snake scale surfacesOpto-Electron Adv20214421000810.29026/oea.2021.210008

[25] Dusser B, Sagan Z, Soder H, et alControlled nanostructrures formation by ultra fast laser pulses for color markingOpt Express20101832913292410.1364/OE.18.002913

[26] Li H, Hu D J, Qin F, et alPrinciple and application of metasurface optical field modulation of atomic layer thicknessChin Opt202114485186610.37188/CO.2021-0069Li H, Hu D J, Qin F, et al. Principle and application of metasurface optical field modulation of atomic layer thickness[J]. Chin Opt, 2021, 14(4): 851−866.

    李昊, 胡德骄, 秦飞, 等原子层厚度超表面光场调控原理及应用中国光学202114485186610.37188/CO.2021-0069

[27] Lu Y D, Hu D J, Zhang M S, et alLaser printing based on curvature-driven shape transition of aluminum nanodiscsChin Opt Lett202119505360210.3788/COL202119.053602

[28] Li G Q, Li J W, Hu Y L, et alFemtosecond laser color marking stainless steel surface with different wavelengthsAppl Phys A201511841189119610.1007/s00339-014-8868-3

[29] Hu D J, Lu Y D, Cao Y Y, et alLaser-splashed three-dimensional plasmonic nanovolcanoes for steganography in angular anisotropyACS Nano20181299233923910.1021/acsnano.8b03964

[30] Wang W, Rosenmann D, Czaplewski D A, et alRealizing structural color generation with aluminum plasmonic V-groove metasurfacesOpt Express20172517204542046510.1364/OE.25.020454

[31] Zeng B B, Gao Y K, Bartoli F JUltrathin nanostructured metals for highly transmissive plasmonic subtractive color filtersSci Rep20133284010.1038/srep02840

欧阳旭, 谢子健, 张孟瑞, 杨清帅, 李晨辉, 曹耀宇, 徐毅, 李向平. 基于激光诱导表面周期结构的微纳防伪结构色[J]. 光电工程, 2022, 49(1): 210320. Xu Ouyang, Zijian Xie, Mengrui Zhang, Qingshuai Yang, Chenhui Li, Yaoyu Cao, Yi Xu, Xiangping Li. Laser-induced periodic surface structure for microscale anti-counterfeiting structural colors[J]. Opto-Electronic Engineering, 2022, 49(1): 210320.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!