人工晶体学报, 2023, 52 (3): 536, 网络出版: 2023-04-13  

氨气沉淀法制备碱式硝酸铜及其形貌机理研究

Preparation and Morphology Mechanism of Basic Copper Nitrate by Ammonia Precipitation
作者单位
1 沈阳化工大学, 辽宁省化工应用技术重点实验室, 沈阳 110142
2 沈阳化工大学, 辽宁省镁钙无机功能材料工程研究中心, 沈阳 110142
3 沈阳化工大学, 沈阳市镁钙资源利用技术重点实验室, 沈阳 110142
摘要
本文以硝酸铜为原料, 采用氨气沉淀法制备了多种形貌的碱式硝酸铜。研究了反应过程中温度、通氨时间和通氨速率对产品微观形貌和产品收率的影响, 在最佳反应条件, 即反应时间40 min、反应温度90 ℃、通氨速率500 mL/min时, 产品收率达到50%, 产品形貌为类六方片状, 分散性好, 粒径分布接近于正态分布。在产品中发现由纳米级碱式硝酸铜颗粒紧密排布而成的二维纳米网状结构, 上面分布有纳米级微孔。采用Morphology及CASTEP程序对碱式硝酸铜生长习性进行理论分析, 计算结果与实验吻合, 由温度引起的(001)晶面显露程度变化是导致宏观形貌不规则的重要因素。
Abstract
Using copper nitrate as raw material, basic copper nitrate with various morphologies were prepared by ammonia precipitation method. The effects of temperature, ammonia-passing time and ammonia-passing rate on the microscopic morphology of the product and product yield during the reaction were studied. Under the optimal reaction conditions, that is, the reaction time of 40 min, the reaction temperature of 90 ℃, and the ammonia passing rate of 500 mL/min, the product yield reaches 50%, and the product morphology is hexagonal flake-like, with good dispersibility and the particle size distribution is close to the normal distribution. It is found in the product that a two-dimensional nano-network structure formed by the close arrangement of nano-scale basic copper nitrate particles, with nano-scale micropores distributed in it. The Morphology and CASTEP program were used to theoretically analyze the growth habit of basic copper nitrate, the calculated results are consistent with the experimental results, the change of (001) crystal surface exposure caused by temperature is an important reason for the irregular macroscopic morphology.
参考文献

[1] 戴良玉, 吴望发, 方遵华, 等. 新一代汽车安全气囊产气新材料-纳米体碱式硝酸铜[DB/OL].(2014-05-10).[2023-02-04]. https://kns.cnki.net/KCMS/detail.aspx?dbname=SNAD&filename=SNAD000001584496.

[2] LIU Y, LIU Y, SHI H H, et al. Cobalt-copper layered double hydroxide nanosheets as high performance bifunctional catalysts for rechargeable lithium-air batteries[J]. Journal of Alloys and Compounds, 2016, 688: 380-387.

[3] 石俊涛, 王 妮, 王秋雨. 安全气囊气体发生剂用碱式硝酸铜的对比研究[J]. 化学推进剂与高分子材料, 2017, 15(1): 56-59.

[4] 徐 爽.杀菌剂用纳米氢氧化铜的制备及应用性能研究[D].北京:中国科学院大学(中国科学院过程工程研究所), 2018.

[5] 景志红, 焦兆友, 庞秋云, 等. 一种纳米氧化铜抗菌剂的制备方法: CN101273723[P]. 2008-10-01.

[6] KRATOHVIL S, MATIJEVIC' E. Preparation of copper compounds of different compositions and particle morphologies[J].Journal of Materials Research, 1991, 6(4): 766-777.

[7] HENRIST C, TRANINA K, HUBERT C, et al. Study of the morphology of copper hydroxynitrate nanoplatelets obtained by controlled double jet precipitation and urea hydrolysis[J]. Journal of Crystal Growth, 2003, 254(1/2): 176-187.

[8] LI B C, JECHAN L, EILHANNI K et al. 2-dimensional nanoleaf-like porous copper nitrate hydroxide as an effective heterogeneous catalyst for selective oxidation of hydroxymethylfurfural to diformylfuran[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 126: 189-196.

[9] 范天博, 贾晓辉, 韩冬雪, 等. 以白云石为原料氨碱法制备球霰石及其生成机理研究[J].无机盐工业, 2021, 53(5):56-60.

[10] 范天博, 姜 宇, 刘露萍, 等. 一步水热法合成六方片状氢氧化镁及其生长习性分析的研究[J]. 人工晶体学报, 2017, 46(12): 2319-2325.

[11] 周永红, 范天博, 刘露萍, 等. 六方片状氢氧化镁的合成及其第一性原理分析[J]. 化工学报, 2016, 67(9): 3843-3849.

[12] ZHAN J, LIN H P, MOU C Y. Biomimetic formation of porous single-crystalline CaCO3 via nanocrystal aggregation[J]. Advanced Materials, 2003, 15(78): 621-623.

[13] HUANG Z Q, ZHANG G S, TAN Y. Gelatinous siphon sheath templates the starfruit-shaped aragonite aggregate growth[J]. Journal of Nanomaterials, 2019, 2019: 1-9.

[14] DI L B, DUAN D Z, ZHAN Z B, et al. Nanosheets: gas-liquid cold plasma for synthesizing copper hydroxide nitrate nanosheets with high adsorption capacity[J]. Advanced Materials Interfaces, 2016, 3(24): no.

[15] 唐福兴. 一种纳米体碱式硝酸铜的合成及应用研究[J]. 化工技术与开发, 2018, 47(8): 25-27.

[16] NIU H X, YANG Q, TANG K B. A new route to copper nitrate hydroxide microcrystals[J]. Materials Science and Engineering: B, 2006, 135(2): 172-175.

[17] 姜慧娜, 宋小军, 刘伟景, 等. 纳米氧化铜尺寸效应对其湿度传感特性的影响[J]. 微纳电子技术, 2018, 55(9): 630-634.

[18] NISTIC R, NOVARA C, CHIAD A, et al. Cysteine-mediated synthesis of silver nanonets and their use for surface enhanced raman scattering (SERS)[J]. Materials Letters, 2019, 247: 208-210.

[19] BERLY R, GOBI N. A concise review on electrospun nanofibres/nanonets for filtration of gaseous and solid constituents (PM2.5) from polluted air[J]. Colloid and Interface Science Communications, 2020, 37: 100275.

[20] 冯璐璐, 曹端林, 王建龙, 等. 1-甲基-2, 4, 5-三硝基咪唑的晶体形貌预测[J]. 含能材料, 2015, 23(5): 443-449.

[21] 王小军, 秦 亮, 何 丹, 等. 2, 4, 6-三硝基-2, 4, 6-三氮杂环己酮的晶体形貌预测[J]. 化学研究, 2012, 23(2): 17-21.

王新安, 范天博, 赵一波, 刘森, 郭洪范, 李雪. 氨气沉淀法制备碱式硝酸铜及其形貌机理研究[J]. 人工晶体学报, 2023, 52(3): 536. WANG Xin’an, FAN Tianbo, ZHAO Yibo, LIU Sen, GUO Hongfan, LI Xue. Preparation and Morphology Mechanism of Basic Copper Nitrate by Ammonia Precipitation[J]. Journal of Synthetic Crystals, 2023, 52(3): 536.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!